Published online by Cambridge University Press: 28 March 2012
Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and HYBRID-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion repassivation potential (ER,CREV) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy HYBRID-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. ER,CREV showed a linear decrease with temperature. There is a temperature above which ER,CREV does not decrease anymore, reaching a minimum value. This ER,CREV value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice former.