Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T20:00:25.559Z Has data issue: false hasContentIssue false

Effects of electro-mechanical stressing on the electrical characterization of on-plastic a-Si:H thin film transistors

Published online by Cambridge University Press:  31 January 2011

Jian Z. Chen
Affiliation:
jchen@ntu.edu.tw, National Taiwan University, Institute of Applied Mechanics, No.1 Sec.4 Roosevelt Rd., Taipei, 10617, Taiwan, Province of China
Yeh Chih-Yong
Affiliation:
d97941011@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
I-Chung Chiu
Affiliation:
r95941034@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Taipei, Taiwan, Province of China
I-Chun Cheng
Affiliation:
ichuncheng@cc.ee.ntu.edu.tw, National Taiwan University, Department of Electrical Engineering, Taipei, Taiwan, Province of China
Jung-Jie Huang
Affiliation:
jj-huang@itri.org.tw, Industrial Technology Research Center, Display Technology Center, Chutung, Taiwan, Province of China
Yung-Pei Chen
Affiliation:
jp_chen@itri.org.tw, Industrial Technology Research Institute, Display Technology Center, Chutung, Taiwan, Province of China
Get access

Abstract

We analyzed the effect of electromechanical stressing on the electrical characteristics of hydrogenated amorphous silicon thin-film transistors. It had been shown that the TFTs, fabricated at 150 °C, respond to tension/compression by a rise/fall in electron mobility. In TFTs fabricated using the same process, a slight shift of threshold voltage was observed under prolonged high compressive strain and the gate leakage current slightly increases after ˜2% compressive strain. In general, the change of TFT performance due to pure mechanical straining is small in comparison to electrical gate-bias stressing. From the comparison among Maxwell stress (induced by electrical gate-bias stressing), mechanical stress (applied by bending), and drifting electrical force for passivated hydrogen atom, the most significant cause for the change of electrical characterization of a-Si:H TFTs should be the trapping charges inside the dielectric, under combined electrical and mechanical stressing. The mechanical stress does not act on Si-H bonds to drift hydrogen atoms, while it is mainly balanced by the rigid Si-Si networks in a-Si:H or a-SiNx. Therefore, mechanical stress has very little effect on the instability of low temperature processed a-Si:H TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yang, C.S. Smith, L. L. Arthur, C. B. and Parsons, G. N. J. Vac. Sci. Technol. B 18, 683(2000).Google Scholar
2 Gleskova, H. Wagner, S. Soboyejo, W. and Suo, Z. J. Appl. Phys. 92, 6224(2002).Google Scholar
3 Gleskova, H. Wagner, S. and Suo, Z. Appl. Phys. Lett. 75, 3011(1999).Google Scholar
4 Gleskova, H. and Wagner, S. Appl. Phys. Lett. 79, 3347(2001).Google Scholar
5 Chen, J. Z. Cheng, I.C. Wagner, S. Jackson, W. Perlov, C. Taussig, C. Mater. Res. Soc. Symp. Proc. 989, 0989–A09 (2007); J. Z. Chen C. R.|Tsay I.C. Cheng H. Gleskova S. Wagner W. B. Jackson C. Perlov and C. Taussig presentation in 7th Annual USDC Flexible Electronics and Displays Conference and Exhibition '07, Phoenix, AZ, USA.Google Scholar
6 Won, S. H. Chung, J. K. Lee, C. B. Nam, H. C. Hur, J. H. and Jang, J. J. Electrochem. Soc. 151, G167 (2004).Google Scholar
7 Berkel, C. van and Powell, M. J. Appl. Phys. Lett. 51, 1094(1987).Google Scholar
8 Powell, M. J. Berkel, C. van, and Hughes, J. R. Appl. Phys. Lett. 54, 1323(1989).Google Scholar
9 Jackson, W. B. and Moyer, M. D. Phys. Rev. B 36, 6217(1987).Google Scholar
10 Jackson, W. B. Marshall, J. M. and Moyer, M. D. Phys. Rev. B 39, 1164(1989).Google Scholar
11 Kaneko, Y. Sasano, A. and Tsukada, T. J. Appl. Phys. 69, 7301(1991).Google Scholar
12 Deane, S. C. Wehrspohn, R. B. and Powell, M. J. Phys. Rev. B 58, 12625(1998).Google Scholar
13 Wehrspohn, R. B. Deane, S. C. French, I. D. Gale, I. and Powell, M. J. J. Appl. Phys. 87, 144(2000).Google Scholar
14 Chen, J. Z. and Cheng, I.C. J. Appl. Phys. 104, 044508(2008).Google Scholar
15 Powell, M. J. Appl. Phys. Lett. 43, 597(1983).Google Scholar
16 Libsch, F. R. and Kanicki, , Appl. Phys. Lett. 62, 1286(1993).Google Scholar
17 Powell, M. J. Berkel, C. van, and Hughes, J. R. Appl. Phys. Lett. 54, 1323(1989).Google Scholar
18 Jackson, W. B. Marshall, J. M. and Moyer, M. D. Phys. Rev. B 39, 1164(1989).Google Scholar
19 Sze, S. M. Physics of Semiconductor Devices, 2nd ed. (1983).Google Scholar
20 McMeeking, R. M. J. Appl. Phys. 62, 3116(1987).Google Scholar
21 Kärcher, R., Ley, L. and Johnson, R. L. Phys. Rev. B 30, 1896(1984).Google Scholar
22 Delden, M. H. W. M. van, and Wel, P. J. van der, IEEE 41st Annual International Reliability Physics Symposium, pp.293 (2003).Google Scholar
23 Kattamis, A. Z. Cherenack, K. H. Hekmatshoar, B. Cheng, I.C. Gleskova, H. Sturm, J. C. and Wagner, S. IEEE Electron Dev. Lett. 28, 606(2007).Google Scholar
24 Huang, J.J. Liu, C.J. Lin, H.C. Tsai, C.J. Chen, Y.P. Hu, G.R. and Lee, C.C. J. Phys. D: Appl. Phys. 41, 245502(2008).Google Scholar
25 Street, R. A. Hydrogenated amorphous silicon (1991).Google Scholar
26 Wehrspohn, R. B. Deane, S. C. French, I. D. Gale, I. Hewett, J. and Powell, M. J. and Robertson, J. J. Appl. Phys. 87, 144(2000).Google Scholar