Published online by Cambridge University Press: 01 February 2011
Growth of GaN based devices such as light emitting diodes and laser diodes often occurs on already prepared GaN templates grown on native (e.g. bulk GaN) and non-native (e.g. sapphire) substrates. High temperature annealing methods that are generally used for growth on other substrates cannot be completed on GaN templates due to the decomposition at temperatures above 800 °C in hydrogen rich ambient. The decomposition rate is higher than the Ga desorption rate from the surface under most conditions and causes Ga droplets to form on the surface which can hinder further growth. The effect of the annealing conditions on the GaN homoepitaxy on GaN templates is presented. In-situ annealing conditions were developed for annealing the GaN templates to remove any contamination while preventing significant Ga droplets from accumulating on the surface in both H2 and N2 environments to obtain optimized annealing conditions. As measured by AFM the RMS roughness of the GaN surfaces increases upon annealing, but becomes similar to the starting template after 1 μm, indicating complete recovery. The optical quality of the homoepitaxially overgrown layers as measured by PL shows improved band edge luminescence and band edge to yellow band ratio for annealing in H2 while it degrades for annealing in N2 only. Hall measurements show superior characteristics for annealing in H2 as well. These results will be especially important because bulk substrates are subjected to polishing damage that is known to negatively affect the surface condition and initial growth nucleation.