Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:52:56.930Z Has data issue: true hasContentIssue false

Effects of the high-refractive index SiNx passivation on AlGaN/GaN HFETs with a very low gate-leakage current

Published online by Cambridge University Press:  01 February 2011

Hiroshi Kambayashi
Affiliation:
kambayashi.hiroshi@furukawa.co.jp, The Furukawa Electric Co., Ltd., Yokohama R&D Laboratories, 2-4-3 Okano, Nishi-ku, Yokohama, Kanagawa, 220-0073, Japan, +81-45-311-1218, +81-45-316-6374
Takahiro Wada
Affiliation:
kambayashi.hiroshi@furukawa.co.jp
Nariaki Ikeda
Affiliation:
nariaki@yokoken.furukawa.co.jp
Seikoh Yoshida
Affiliation:
seikoh@yokoken.furukawa.co.jp
Get access

Abstract

We have reported on the stress effects of the SiNx passivation film on AlGaN/GaN heterojunction field effect transistors (HFETs). The AlGaN/AlN/GaN heterostructure was grown using a metalorganic chemical vapor deposition (MOCVD). We first investigated the dependences between SiNx films and the refractive index of these. As a result, the stress type of the SiNx films was all Tensile. Moreover, the refractive index of SiNx increased, the stress was decreasing and almost invariable over refractive index 2.1. Furthermore, we fabricated some kinds of AlGaN/GaN HFETs and estimated the gate-leakage current and the current collapse of HFET. As a result, we confirmed the relationship between the stress of passivation film and gate-leakage current, and that the low stress SiNx film with a high-refractive index can suppress both a gate-leakage current and a current collapse.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chow, T.P., Tyagi, R., IEEE Trans Electron Devices, 41, (1994) 1481.CrossRefGoogle Scholar
[2] Akutas, O., Fan, Z.F., Mohammad, S.N., Botchkarev, A.E., and Morkoc, H., Appl Phys Lett, 69, (1996) 3872.CrossRefGoogle Scholar
[3] Yang, W., Lu, J., Asifkhan, M., Adesida, I., IEEE Trans Electron Devices, 48, (2001) 581.CrossRefGoogle Scholar
[4] Yoshida, S. and Suzuki, J., Jpn J Appl Phys Lett, 38, (1999) 851.CrossRefGoogle Scholar
[5] Okita, H., Kaifu, K., Mita, J., Yamada, T., Sano, Y., Ishikawa, H., Egawa, T., and Jimbo, T.: Phys. Stat. Sol. (a) 200, No. 1, (2003) 187.CrossRefGoogle Scholar
[6] Okamoto, Y., Ando, Y., Hataya, K., Miyamoto, H., Inoue, T., and Kuzuhara, M.: Electron Lett. 39, (2003) 1474.CrossRefGoogle Scholar
[7] Binari, S. C., and Dietrich, H. B.: Proc. 21st Int. Symp. On Compound Semiconductors, IOP Publishing, Bristol, (1995) 459.Google Scholar
[8] Hashizume, T., Ootomo, T. and Hasegawa, H.: Appl. Phys. Lett., 83, (2003) 2952.CrossRefGoogle Scholar
[9] Vetury, R., Zhang, N. Q., Keller, S., and Mishra, U. K.: IEEE Trans. Electron Device, 48, (2001) 560.CrossRefGoogle Scholar
[10] Hashizume, T., and Nakasaki, R.: Appl. Phys. Lett., 80, (2002) 4564.CrossRefGoogle Scholar