Published online by Cambridge University Press: 15 February 2011
Stereo transmission electron microscopy has been used to characterise the distribution in depth of disordered zones and associated dislocation loops in the ordered alloys Ni3Al and Cu3Au after heavy ion irradiation, most extensively for Ni3Al irradiated with 50 keV Ta+ ions at a temperature of 573 K. The Cu3Au specimen was irradiated with 50 keV Ni+ ions at an incident angle of 45° at a temperature of 373 K. In Ni3Al the defect yield, i.e. the probability for a disordered zone to contain a loop was found to be strongly dependent on the depth of the zone in the foil, varying from about 0.7 for near-surface zones to about 0.2 in the bulk. The sizes and shapes of disordered zones were only weakly dependent on depth, except for a small population of zones very near the surface which were strongly elongated parallel to the incident ion beam. In Cu3Au the surface had a smaller but still significant effect on the defect yield. The dependence of the tranverse disordered zone diameter d on ion energy E for Ta+ irradiation of NiA was found to follow a relationship d = k1, E1/α with k, = 2.4 ± 0.4 and α = 3.3 ± 0.4. A similar relationship with the same value of α is valid for a wide variety of incident ion/target combinations found in the literature.