Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T00:59:43.374Z Has data issue: false hasContentIssue false

Electrical and Electronic Properties of Grain Boundaries in Silicon

Published online by Cambridge University Press:  22 February 2011

Hans J. Queisser
Affiliation:
Max–Planck–Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
Jorgen H. Werner
Affiliation:
Max–Planck–Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

The electronic states at silicon grain boundaries trap preferentially majority carriers, thus cause a potential barrier impeding current flow. We here summarize measurement techniques for the energy distribution of these grain boundary traps. The analysis reveals band tails due to disorder in the boundary plane as well as interface state continua at midgap. The spatial distribution of trapped charges results in significant electrostatic potential fluctuations which are observable in ac-admittance and noise experiments; the charge fluctuations cause in particular 1/f-like noise. The naive model of dangling bonds to describe grain boundary charges is insufficient, impurity atoms, especially oxygen, play essential roles in determining electronic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Queisser, H.J., in ”Physics of Failure in Electronics”, Goldberg, M.F. and Vacarro, J., eds. (Spartan Books, Baltimore, 1963); H.J. Queisser, Festkörperprobleme 11, 162 (1963)Google Scholar
[2] Dash, W.C., J. Appl. Phys. 30, 459 (1959)CrossRefGoogle Scholar
[3] Matare, H.F., Z. Physik 145, 206 (1956)CrossRefGoogle Scholar
[4] Shockley, W.B., US Patent 2, 954, 307 (filed 1957), also Ref. 3Google Scholar
[5] For an earlier review, see Queisser, H.J., Mat. Res. Soc. Symp. Proc. 14, 323 (1983)CrossRefGoogle Scholar
[6] Holt, D.B., J. Physique Colloque (Paris) 40, C6–189 (1079)Google Scholar
[7] Kazmerski, L., in ”Proc. 14th Photovoltaics Spec. Conf.” (IEEE, New York, 1980), p. 281Google Scholar
[8] However, n–type Ge, p–type InSb, and p–type Hg1-xMnxTe exhibit evidence for two-dimensional carrier behavior near grain boundaries: For Ge, see e.g. Uchida, S., Remenyi, G. and Landwehr, G., in “High Magnetic Fields”, Landwehr, G., ed. (Springer, Heidelberg, 1987), p. 353; for InSb, see R. Herrmann, W. Kraak, and M. Glinski, Physica Status Solidi B 125, K85 (1984); for Hgi-xMnxTe, see G. Grabecki, T. Dietl, P. Sobkowicz, J. Kossut, and W. Zawadski, Appl. Phys. Lett. 45, 1214 (1984)Google Scholar
[9] Grovenor, C.R. J. Phys. C: Solid State Phys. 18, 4079 (1985)CrossRefGoogle Scholar
[10] Werner, J., in ”Polycrystalline Semiconductors – Physical Properties and Applications”, Harbeke, G. ed., (Springer Berlin 1985), p. 77 Google Scholar
[11] Seager, C.H., Ann. Rev. Mat. Scd. 15, 271 (1985)CrossRefGoogle Scholar
[12] Pike, G.E. and Seager, C.H., J. Appl. Phys. 50, 3414 (1979); C.H. Seager and G.E. Pike, Appl. Phys. Lett. 35, 709 (1979)CrossRefGoogle Scholar
[13] Seager, C.H., Appl. Phys. Lett. 40, 471 (1982)CrossRefGoogle Scholar
[14] Broniatowski, A. and Bourgoin, J.-C., Phys. Rev. Lett. 48, 424 (1982); A. Broniatowki, in ”Polycrystalline Semiconductors – Physical Properties and Applications”, G. Harbeke ed., (Springer Berlin 1985), p. 95CrossRefGoogle Scholar
[15] Werner, J., Jantsch, W. and Queisser, H.J., Solid State Comm. 42, 415 (1982)CrossRefGoogle Scholar
[16] Werner, J. and Strunk, H., J. Phys. Colloque (Paris) 43, CI89 (1982)Google Scholar
[17] Stützler, F. J., Madenach, A.J., Werner, J., Lu, Y.C., and Queisser, H.J., Proc. 4th Internat. Conf. on Grain Boundary Structure and Related Phenomena, J. Jap. Inst. Metals, Sendal 1985, page 1005Google Scholar
[18] Madenach, A.J. and Werner, J., Phys. Rev. Lett. 55, 1212 (1985)CrossRefGoogle Scholar
[19] Madenach, A.J., thesis (Stuttgart 1986), unpublished; A.J. Madenach, J. Werner, and F.J. Sttitzler, in ”Proc. 18th Photovoltaics Spec. Conf.”,(IEEE, Las Vegas, 1985), p.1080Google Scholar
[20] Jackson, W.B., Johnson, N.M., and Biegelsen, D.K., Appl. Phys. Lett. 43, 195 (1983)CrossRefGoogle Scholar
[21] Harbeke, G., in ”Polycrystalline Semiconductors – Physical Properties and Applications”, Harbeke, G. ed., (Springer Berlin 1985), p. 156 Google Scholar
[22] de Graaff, H.C., Huybers, N., and de Groot, J.C., Solid State Electron. 25, 67 (1982); for polycrystalline GaAs, see J.J.J. Yang, P.D. Dapkus, R.D. Dupuis, and R.D.Yingling, J. Appl. Phys. 51, 3794 (1980)CrossRefGoogle Scholar
[23] Hirae, S., Hirose, M., and Osaka, Y., J. Appl. Phys. 51, 1043 (1980)CrossRefGoogle Scholar
[24] Werner, J. and Peisl, M., Phys. Rev. B 31, 6881 (1985); D.M.Taylor and D.W. Tong, J. Appl. Phys. 56, 1881 (1984)CrossRefGoogle Scholar
[25] Peisl, M. and Wieder, A.W., IEEE Trans. Electr. Dev. ED30, 1792 (1983)CrossRefGoogle Scholar
[26] Faughnan, B., Appl. Phys. Lett. 50, 290 (1987)CrossRefGoogle Scholar
[27] Winer, K. and Ley, L., Phys. Rev. B 36, 6072 (1987)CrossRefGoogle Scholar
[28] Werner, J. and Peisl, M., Mat. Res. Soc. Symp. Proc. 46, 575 (1985)CrossRefGoogle Scholar
[29] Soukoulis, C.M., Cohen, M.H., and Economou, E.N., Phys. Rev. Lett. 53, 616 (1984); see also Y. Bar-Yam, D. Adler, and J.D. Joannopoulos, Phys. Rev. Lett. 57, 467 (1986)CrossRefGoogle Scholar
[30] Shur, M. and Hack, M., J. Appl. Phys. 55, 3831 (1984)CrossRefGoogle Scholar
[31] Nicollian, E.H. and Brews, J.R., ”MOS Physics and Technology”, (John Wiley, New York 1982), chapt. 7Google Scholar
[32] Lang, D.V., J. Appl. Phys. 45, 3023 (1974)CrossRefGoogle Scholar
[33] Broniatowski, A., Phys. Rev. B 36, 5895 (1987)CrossRefGoogle Scholar
[34] Blatter, G. and Greuter, F., Phys. Rev. B 34, 8555 (1986)CrossRefGoogle Scholar
[35] Blatter, G. and Greuter, F., Phys. Rev. B 33, 3952 (1986); G. Blatter and F. Greuter, in ”Polycrystalline Semiconductors -Physical Properties and Applications”, G. Harbeke ed., (Springer, Berlin 1985), p. 118CrossRefGoogle Scholar
[36] Seager, C.H. and Pike, G.E., Appl. Phys. Lett. 37, 747 (1980)CrossRefGoogle Scholar
[37] Queisser, H.J., J. Phys. Soc. Jpn. 18, Suppl. III, 142 (1963)Google Scholar
[38] Redfield, D., Appl. Phys. Lett. 40, 163 (1982)CrossRefGoogle Scholar
[39] Redfield, D., Appl. Phys. Lett. 38, 174 (1981)CrossRefGoogle Scholar
[40] Kazmerski, L.L. and Dick, J.R., J. Vac. Sci. Technol. A 2, 1120 (1984)CrossRefGoogle Scholar
[41] Yang, C., Appl. Phys. Lett. 51, 112 (1987)CrossRefGoogle Scholar
[42] Pizzini, S., Cagnoni, P., Sandrinelli, A., Anderle, M., and Canteri, R., Appl. Phys. Lett. 51, 676 (1987)CrossRefGoogle Scholar
[43] Seager, C.H., Sharp, D.J., Panitz, J.K.G., and Hanoka, J.I., J. Phys. Colloque (Paris) 43, C1103 (1982)Google Scholar
[44] Martinuzzi, S., Rev. Phys. Appl. 22, 637 (1987)CrossRefGoogle Scholar
[45] Stützler, F.J. and Queisser, H.J., J. Appl. Phys. 60, 3910 (1986)CrossRefGoogle Scholar
[46] Stützler, F.J., thesis (Stuttgart 1986), unpublishedGoogle Scholar
[47] Bode, M., unpublishedGoogle Scholar
[48] Bode, M., thesis, (Stuttgart 1987), unpublishedGoogle Scholar
[49] Cottrell, A.H., ”Dislocations and Plastic Flow in Crystals”. (Clarendon, Oxford, 1953)Google Scholar
[50] Kazmerski, L.L. and Russel, P.E., J. Phys. Colloque (Paris) 43 C1171 (1982)Google Scholar