Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:07:04.838Z Has data issue: false hasContentIssue false

Electrical Characteristics of RF Sputtered ZnO/HfO2 Interfaces in Transparent Thin Film Transistors

Published online by Cambridge University Press:  24 June 2015

Prem Thapaliya
Affiliation:
Department of Electrical Engineering and Computer Science University of Toledo, OH 43606, U.S.A.
Wenchao Lu
Affiliation:
Department of Electrical Engineering and Computer Science University of Toledo, OH 43606, U.S.A.
Rashmi Jha
Affiliation:
Department of Electrical Engineering and Computer Science University of Toledo, OH 43606, U.S.A.
Get access

Abstract

In this work, we have reported the interface characterization of rf sputtered ZnO/HfO2 in thin film transistor structure by dc current-voltage and admittance spectroscopy. The interface state density (Dit) of 1013 eV−1cm−2 was extracted from the Gp/ω vs ω plot was comparable to value obtained from the subthreshold behavior. The grain boundary trap density (NGB) of 9.12×1012 cm−2 was estimated using Levinson’s model. The interface state density distribution below the conduction band edge shows a decreasing trend with energy below the conduction band edge. We also studied the impact of introducing MgO interfacial layer between ZnO and HfO2 interface as an approach towards decreasing the interface state density.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stutzmann, M., Sharp, I.D., Garrido, J.A., Appl. Phys. Lett. 99, 033503 (2011).Google Scholar
Chang, S, Song, Y., Lee, S., Lee, S. Y., and Ju, B. K., Appl. Phys. Lett. 92, 192104 (2008).CrossRefGoogle Scholar
Kang, A. Y., Lenahan, P. M., and Conley, J. F. Jr., Appl. Phys. Lett. 83, 3407 (2003).CrossRefGoogle Scholar
Chen, W.-Y., Jeng, J.-S., Chen, J.-S., ECS Solid State Lett. 1(5) (2012).Google Scholar
Siddiqui, J. J., Phillips, J. D., Leedy, K., and Bayraktaroglu, B., IEEE Electron Device Lett. 32,12 (2011).CrossRefGoogle Scholar
Carcia, P. F., McLean, R. S., and Reilly, M. H., Appl. Phys. Lett. 88, 123509 (2006).CrossRefGoogle Scholar
Martins, R., Barquinha, P., Ferreira, I., Pereira, L., Gonçalves, G., Fortunato, E., J. Appl. Phys. 101, 044505 (2007).CrossRefGoogle Scholar
Levinson, J., Shepherd, F. R., Scalnon, P. J., Westwod, W. D., Este, G., and Rider, M., J. Appl. Phys., 53, 1193 (1982).CrossRefGoogle Scholar
Nicollian, E. H. and Goetzberger, A., Microelectron. Reliab. 7, 164 (1968).Google Scholar
Lin, H. C., Brammertz, G., Martens, K., de Valicourt, G., Negre, L., Wang, W. E., Tsai, W., Meuris, M., and Heyns, M., Appl. Phys. Lett. 94, 153508 (2009).CrossRefGoogle Scholar
Chicot, G., Pernot, J., Santailler, J.L., Chevalier, C., Granier, C., Ferret, P., Ribeaud, A., Feuillet, G. and Muret, P., Phys. Status Solidi B, 251, 206 (2014).CrossRefGoogle Scholar