Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:50:18.528Z Has data issue: false hasContentIssue false

Electrical Conductivity and Seebeck Coefficient of Divalent-Metal-Doped YCrO3

Published online by Cambridge University Press:  28 February 2011

W. J. Weber
Affiliation:
Battelle Pacific Northwest Laboratories, P. O. Box 999, Richland, WA 99352
J. L. Bates
Affiliation:
Battelle Pacific Northwest Laboratories, P. O. Box 999, Richland, WA 99352
C. W. Griffin
Affiliation:
Battelle Pacific Northwest Laboratories, P. O. Box 999, Richland, WA 99352
L. C. Olsen
Affiliation:
Joint Center for Graduate Study, 100 Sprout Road, Richland, WA 99352
Get access

Abstract

The substitution of divalent metal ions for γ(+3) in γCrO3 results in a charge compensating transition of Cr(+3) to Cr(+4) and the formation of small polarons as charge carriers. The experimentally measured electrical conductivity, σ, and Seebeck coefficient, S, exhibit behavior consistent with a theoretical model developed for small polaron transport in these narrow-band semiconductors. The small polaron transport is a thermally-activated process with a measured activation energy, E, of about 0.18 to 0.25 eV in these materials. Both σ and S increase with temperature and show a near linear dependence on dopant concentration and a strong dependence on dopant (ionic) size. Analysis of the results in terms of the model indicates that Ca is much more effective in polaron formation than any of the other dopants in γCrO3; this is due to the similar ionic size of Ca(+2) and γ(+3) which minimizes the lattice distortion from substitution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flandermeyer, B. K., Nasrallah, M. M., Agarwal, A. K., and Anderson, H. U., J. Amer. Ceram. Soc., 67:195 (1984).Google Scholar
2. Anderson, H. U., Nasrallah, M. M., Flandermeyer, B. K., and Agarwal, A. K., J. Solid State Chem., 56:325 (1985).Google Scholar
3. Karim, D. P. and Aldred, A. T., Phys. Rev. B, 20:2255 (1979).Google Scholar
4. Meadowcraft, D. B., Brit. J. Appl. Phys., 2:1225 (1969).Google Scholar
5. Levin, E. M. and McMurdie, H. F., Phase Diagrams for Ceramists 1975 Supplement, Reser, M. K. ed., pp. 144146 (American Ceramic Society, Inc., Columbus, Ohio, 1975).Google Scholar
6. Ruiz, J. S., Anthony, A. M., and Foex, M., C. R. Acad. Sci., Paris, B264:1271 (1967).Google Scholar
7. Khattak, C. P. and Cox, D. E., Mat. Res. Bull., 12:463 (1977).Google Scholar
8. Pechini, M., U. S. Patent 3330697, July 1967.Google Scholar
9. Trestman-Matts, A., Dorris, S. E., and Mason, T. O., J. Amer. Ceram. Soc, 66:589 (1983).Google Scholar
10. Heikes, R. R., Thermoe1ectricity, Heikes, R. R. and Ure, R. W. eds., Chap. 4 (Interscience, New York, 1961).Google Scholar
11. Chaikin, P. M. and Beni, G., Phys. Rev. B, 13:647 (1976).Google Scholar
12. Goodenough, J. B., Phys. Rev., 164:785 (1967).Google Scholar