Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T05:09:37.854Z Has data issue: false hasContentIssue false

Electrical Properties of Fully Epitaxial PZT/MgO/Si Stacked Structures for Nonvolatile Future Memory Devices

Published online by Cambridge University Press:  10 February 2011

J. Senzaki
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan, jsenzaki@cc.tuat.ac.jp
T. Ueno
Affiliation:
Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
Get access

Abstract

Fully epitaxial Pb (Zr,Ti)O3(PZT)/MgO/Si(001) stacked structures, one of the potential components of ferroelectric-gate FETs, have been fabricated and characterized. According to the structural and electrical characterization of MgO/Si structures, epitaxially grown MgO thin films on the Si substrates showed a small leakage current of ∼ 10−8 A/cm2 at the electric field of 1 MV/cm. In the C-V measurements of the as-grown MgO/Si heteroepitaxial interfaces, injection-type hysteresis was observed because of the crystal defects in the MgO film adjacent to the interface. Using oxygen annealing with a temperature of 400 °C, it showed no hysteresis and a lower interface trap density of the order of 1011 cm−2eV−1 could be achieved with no formation of a low dielectric layer at the MgO/Si interface. These results indicate that the epitaxial MgO thin films are applicable as the gate insulators of FETs. After the PZT film was deposited on the MgO/Si structure, the C-V characteristic of the stacked structure showed a ferroelectric hysteresis curve and the low interface trap density of 5 × 1011 cm−2eV−1 A maximum memory window width of 1.2 V could be obtained in the PZT thin film on the Si substrate with a MgO intermediate layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abe, K., Tomita, H., Toyoda, H., Imai, M. and Yokote, Y., Jpn. J. Appl. Phys. 30, 2152 (1991).Google Scholar
2. Torii, K., Kawakami, H., Miki, H., Kushida, K. and Fujisaki, Y., J. Appl. Phys. 81, 2755 (1997).Google Scholar
3. Aoki, K., Fukuda, Y., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys. 35, 2210 (1996).Google Scholar
4. Hirai, T., Teramoto, K., Nagashima, K., Koike, H., Matsuno, S., Tanimoto, S. and Tarui, Y., Jpn. J. Appl. Phys. 35, 4016 (1996).Google Scholar
5. Horita, S., Kawada, T. and Abe, Y., Jpn. J. Appl. Phys. 35, L1357 (1996).Google Scholar
6. Ching, W.C. and Wu, M.S., Jpn. J. Appl. Phys. 36, 203 (1997).Google Scholar
7. Masuda, A., Yamanaka, Y., Tazoe, M., Yonezawa, Y., Morimoto, A. and Shirnizu, T., Jpn. J. Appl. Phys. 34, 5154 (1995).Google Scholar
8. Senzaki, J., Mitsunaga, O., Uchida, T., Ueno, T. and Kuroiwa, K., Jpn. J. Appl. Phys. 35, 4195 (1996).Google Scholar
9. Sotome, Y., Senzaki, J., Morita, S., Tanimoto, S., Hirai, T., Ueno, T., Kuroiwa, K. and Tarui, Y., Jpn. J. Appl. Phys. 33, 4066 (1994).Google Scholar
10. Terman, L.M., Solid-State Electron. 5, 285 (1962).Google Scholar
11. Fork, D.K., Ponce, F.A., Tramontana, J.C. and Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar
12. Masuda, A. and Nashimoto, K., Jpn. J. Appl. Phys. 33, L793 (1994).Google Scholar
13. Senzaki, J. and Ueno, T.: submitted to Growth, J. Cryst.Google Scholar