Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:47:17.112Z Has data issue: false hasContentIssue false

Electrical Properties of Thin Layers Consisting of Surface Functionalized Silicon Nanoparticles

Published online by Cambridge University Press:  17 May 2011

Jürgen Nelles
Affiliation:
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany and JARA-FIT (Juelich-Aachen Research Alliance – Future Information Technology)
Enrique Rodríguez Castellón
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, 29071 Málaga, Spain
Ulrich Simon
Affiliation:
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany and JARA-FIT (Juelich-Aachen Research Alliance – Future Information Technology)
Get access

Abstract

The present study investigates systematically, how the electrical properties of thin films consisting of silicon nanoparticles are affected by an organic monolayer coating the particles. Therefore, films of as-prepared silicon nanoparticles with a size of about 23 nm as well as freshly etched ones, both terminated with hydrogen, are compared with films of silicon nanoparticles functionalized with different 1-alkenes. It is found that the activation energy of the electron transport through the nanoparticle films scales with the thickness and permittivity of the respective organic monolayer.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mizuta, H., Khalafalla, M., Durrani, Z.A.K., Uno, S., Koshida, N., Tschuchiya, Y., Oda, S., Electrochem. Soc. Proc. 2004, 89 (2004).Google Scholar
2. Steimle, R., Muralidhar, R., Rao, R., Sadd, M., Swift, C., Yater, J., Hradsky, B., Straub, S.G.H., Vishnubhotla, L.P.E., Merchant, T., Acred, B., Chang, K., White, B. Jr., Microelectronics Reliability 47, 585 (2007).Google Scholar
3. Härting, M., Zhang, J., Gamota, D. R., Britton, D. T., Appl. Phys. Lett. 94, 193509 (2009).Google Scholar
4. Talapin, D.V., Lee, J., Kovalenko, M.V., Shevchenko, E.V., Chem. Rev. 110, 389 (2010).10.1021/cr900137kGoogle Scholar
5. Morales-Sánchez, A., Barreto, J., Domínguez, C., Aceves-Mijares, M., Perálvarez, M., Garrido, B., Luna-López, J.A. 21, 085710 (2010).Google Scholar
6. Knipping, J., Wiggers, H., Rellinghaus, B., Roth, P., Konjhodzic, D., Meier, C., J. Nanosci. Nanotechnol. 4, 1039 (2004).Google Scholar
7. Zhao, J., Uosaki, K., J. Phys. Chem. B 108, 17129 (2004).Google Scholar
8. Nelles, J., Sendor, D., Petrat, F.-M., Simon, U., J. Nanopart. Res. 12, 1367 (2009).Google Scholar
9. Nelles, J., Sendor, D., Ebbers, A., Petrat, F.-M., Wiggers, H., Schulz, C., Simon, U., Colloid Polym. Sci. 285, 729 (2007).Google Scholar
10. Nelles, J., Sendor, D., Bertmer, M., Ebbers, A., Petrat, F.-M., Simon, U., J. Nanosci. Nanotechnol. 7, 2818 (2007).Google Scholar
11. Jonscher, A. K., Universal Relaxation Law, 1st edition (Chelsea Dielectric Press, 1996).Google Scholar
12. Kremer, F., Schönhals, A., Broadband Dielectric Spectroscopy, (Springer-Verlag, 2003).Google Scholar
13. Dyre, J.C., Schroder, T.B., Re. Mod. Phys. 72, 873 (2000).Google Scholar
14. Dyre, J.C., J. Appl. Phys. 64, 2456 (1988).Google Scholar