Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:02:06.806Z Has data issue: false hasContentIssue false

Electroluminescence Evaluation of the SiO2-Si Structures Using an Electrolyte-SiO2-Si Cell

Published online by Cambridge University Press:  25 February 2011

A.P. Baraban
Affiliation:
Institute of Physics of St. Petersburg University, 198904 St. Petersburg, Petrodvorets, Russia
P.P. Konorov
Affiliation:
Institute of Physics of St. Petersburg University, 198904 St. Petersburg, Petrodvorets, Russia
S.A. Bota
Affiliation:
LCMM, Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
J.R. Morante
Affiliation:
LCMM, Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
Get access

Abstract

The use of an Electrolyte-SiO2-Si system allows a detailed control of the electron injection from the electrolyte into SiO2 layer, and makes feasible to reach the electron heating in the conduction band of SiO2 before to take place the irreversible breakdown.

The injected and heated electrons enhance the probability of the SiO2 defect excitation as well as the Si-O bond breaking. Both features give raise to the relaxation processes which are responsible of the electroluminescence characteristics of the oxide. So, the measured electroluminescence spectrum presents straightforward information on the defect types, their nature and possible precursor defect behaviour. Results on silicon oxides obtained from different technological processes and treatments, corroborate the above analysis and show the electro-luminescence of SiO2 as an interesting and powerful method to evaluate the SiO2 properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DiMaria, D.J. and Stasiak, J.W., J.Appl.Phys, 65, 2342 (1989).Google Scholar
2. Singh, R.J. and Srivastava, R.S.. J.Appl.Phys, 54, 1162 (1983).CrossRefGoogle Scholar
3. Gale, R., Feigl, F.J., Magee, C.W., and Young, D.R.. J.Appl.Phys, 54, 6938 (1983).Google Scholar
4. Feigl, F.J., Young, D.R., DiMaria, D.J., Lai, S. and Calise, J.. J.Appl.Phys, 52 5665 (1981).Google Scholar
5. Griscom, D.L.. Phys.Rev. B22, 4192 (1980).Google Scholar
6. Devine, R.A.B.. Nucl.Instr & Method. in Phys.Res. B46, 244 (1990).CrossRefGoogle Scholar