Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T07:10:59.502Z Has data issue: false hasContentIssue false

The Electronic Transfer and the Formation of Cationic Intercalation Compounds

Published online by Cambridge University Press:  21 February 2011

J. Rouxel*
Affiliation:
Laboratoire de Chimie des Solides, Institut de Physique et Chimie des Matériaux - 2, rue de la Houssinière, 44072 Nantes Cédex 03, France
Get access

Abstract

Low-dimensional solids are known to be among the best host structures to practice intercalation chemistry. Besides geometrical aspects which play an important role but are now quite well understood, this paper emphasizes the relationship between chemical reactivity and the electronic structure of the host. A special attention is paid to the nature of redox centers involved in the intercalation process and to the connection between the phase diagram and the band structure of the host material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rouxel, J. and Palvadeau, P., Rev. Chim. Min. 19, 317 (1982)Google Scholar
2. Steffen, R. and Schöllhorn, R., Solid State lonics 22, 31 (1986)Google Scholar
3. Chevrel, R. and Sergent, M., J. Sol. State Chem. 3, 8807 (1971)Google Scholar
4. Schollhorn, R., Angew. Chem. Int. Ed. Engl. 19, 983 (1980)CrossRefGoogle Scholar
5. Salem, A. Ben, Meerschaut, A., Whangbo, M.H. and Rouxel, J., Inorg. Chem. (in the press) and J. Rouxel, Physical Chemistry of Intercalation, NATO, ASI (1987)Google Scholar
6. Meerschaut, A., Gressier, P., Guemas, L. and Rouxel, J., Mat. Res. Bull., 16, 1035 (1981) and R. Cava, V.L. Hines, A.D. Mighell and R.S. Roth, Phys. Rev. B 24(6), 3634 (1981)Google Scholar
7. Rouxel, J., J. Sol. State Chem. 17, 223 (1976)Google Scholar
8. Molinid, P., Trichet, L., Rouxel, J., Berthier, C., Chabre, Y. and Segransan, P., J. Phys. and Chem. of Solids 451, 105 (1984)Google Scholar
9. Whangbo, M.H., Trichet, L. and Rouxel, J., Inorg. Chem., 24, 1824 (1985)Google Scholar
10. Py, M.A. and Haering, R.R., Can. J. Phys. 61, 76 (1983)Google Scholar
11. Umrigar, C., Ellis, D.E., Wang, D., Krakaner, H. and PostenakK, M., Phys. Rev. B 26, 4935 (1982)Google Scholar
12. Kinnon, W.R. Mc, Chemical Physics of Intercalation, NATO ASI Series B 172, 181194 (1987)Google Scholar
13. Friedel, J., Adv. Phys. 3, 446 (1954)Google Scholar
14. Kinnon, W.R. Mc and Selwyn, L.S., Phys. Rev.B 35, 7275 (1987)Google Scholar
15. Berthier, C., Chabre, Y., Segransan, P., Chevalier, P., Trichet, L., Mehautd, A. Le, Sol. State lonics, 5, 379 (1981) and C. Berthier, Y. Chabre, P. Segransan, P. Deniard, L. Trichet and J. Rouxel, NATO ASI, vol. 130, 561 (1985)Google Scholar
16. For a critical discussion see Deniard, P., Trichet, L. and Chabre, Y., NATO ASI, Vol. 172, 387 (1987)Google Scholar
17. Dahn, J.R., Kinnon, W.R. Mc and Clement, C. Levy, Sol. State Comm., 54, 245 (1985)Google Scholar
18. Chabre, Y. and Deniard, P., NATO ASI, Vol. 172, 395 (1987)Google Scholar
19. Brec, R., Sol State Ionics, 22, 3 (1986).Google Scholar
20. Barj, M., Sourisseau, C., Ouvrard, G. and Brec, R., Sol. State Ionics, 11, 179 (1983)CrossRefGoogle Scholar
21. Whangbo, M.H., Brec, R., Ouvrard, G. and Rouxel, J., Inorg. Chem. 24, 2459 (1985)Google Scholar
22. Chabre, Y., Segransan, P., Berthier, C. and Ouvrard, G., Fast Ion transport in solids, edited by Vashishta, P. (North Holland, 1981) p.221 Google Scholar
23. Ouvrard, G., Thesis, Nantes, 1980 Google Scholar
24. Prouzet, E., Thesis, Nantes, 1988 Google Scholar
25. Sunshine, S.A. and Ibers, J.A., Inorg. Chem. 2–4, 3611 (1985)Google Scholar
26. Colombet, P., Ouvrard, G., Antson, O. and Brec, R., J. Magn. and Magnetic Mat. 71, 100 (1987).Google Scholar