No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Vanadium oxide nanorods intercalated with lithium cations have been successfully formed by the hydrothermal treatment of electrospun precursors. The novelty of this synthesis method is the control of the morphology of the vanadium nanorod precursor by the electrospinning process, and then to convert to the desired compound with loss of the organic polymer while maintaining the morphology through a hydrothermal treatment. Transmission llectron microcopy shows that the single nanorods formed have a square shape cross-section with a width of less than 100nm. Electron diffraction shows that each nanorod is a single crystal, and X-ray diffraction shows that the nanorods have a layered structure with a 10.5 Å layer spacing. Their characterization, magnetic and electrochemical behavior and variable chemical composition are described together with the opportunities electrospinning presents for forming novel materials.