No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
In-house synthesized copolymers Polystyrene-co-glycidyl methacrylate (PSt-co-GMA) are electrospun as mat of surface modified nanofibers with and without multi walled carbon nanotubes (MWCNTs). Composites are then formed by embedding layers of the nanofiber mats into epoxy resin. Interfacial bonding between polymer matrix and the nanofibers, and surface modification driven enhancement in mechanical response is assessed under flexural loads. Results indicate that at elevated temperture storage modulus of epoxy reinforced by PSt-co-GMA nanofibers and PSt-co-GMA/ MWCNTs composite nanofibers is about 10 and 20 times higher than the neat epoxy, respectively, despite weight fraction of the nanofibers being as low as 2%. Interfacial interaction is revealed by the storage modulus comparison of unmodified Polystyrene (PSt) and modified PSt-co-GMA nanofiber reinforced composite. To enhance further the resulting “crosslinked” structure, crosslinking agent ethylenediamine is also sprayed on the nanofibrous mats. Increased crosslinking density improves mechanical response of sprayed-over PSt-co-GMA nanofibers reinforced composites which is about 4 times higher than plain PSt-co-GMA nanofibers.