Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T22:52:09.723Z Has data issue: false hasContentIssue false

Electrostatic Spinning, Pyrolysis, and Characterization of Boron Carbide Nanofibers Prepared from Poly(norbornenyldecaborane) - a Polymeric Ceramic Precursor

Published online by Cambridge University Press:  01 February 2011

Daniel T. Welna
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
Xiaolan Wei
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
Jared D. Bender
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
Nick R. Krogman
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
Larry G. Sneddon
Affiliation:
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
Harry R. Allcock
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
Get access

Abstract

Electrostatic spinning is a well-developed technique for the fabrication of fibers in the nanoscale domain. Novel boron carbide nanofibers were generated by the electrostatic spinning and ceramic conversion of poly(norbornenyldecaborane) (PND) - a polymeric ceramic precursor. The prepyrolyzed fibers were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ceramic fibers were characterized by SEM, X-ray diffraction (XRD), 11B magic-angle spinning nuclear magnetic resonance (MAS NMR) and DRIFT spectroscopy. SEM analysis showed retention of the nanostructure in the pre- and postpyrolyzed fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xia, Y., Yang, P., Sun, Y, Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
2. High temperature ceramic matrix composites, edited by W. Krenkel, R. Naslain, H. Schneider (Wiley-VCH, Weinheim, Germany, 2001) pp. 288298.Google Scholar
3. Fine ceramic fibers edited by A. Bunsell, M. Berger (Marcel Dekker, New York, NY, 1999) pp. 15, 207–229.Google Scholar
4. Pender, M., Sneddon, L., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 41, 551 (2001).Google Scholar
5. Li, D., Wang, Y., Xia, Y., Nano Lett. 3, 1167 (2003).Google Scholar
6. MacDiarmid, A., Jones, W., Norris, I., Gao, J., Johnson, A. Jr, Pinto, N., Hone, J., Han, B., Ko, F., Okuzzaki, H., Llaguno, M., Synth. Met. 119, 27 (2001).Google Scholar
7. Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J., Biomaterials 24, 2077 (2003).Google Scholar
8. Ko, F., Gogotsi, Y., Ali, A., Naguid, N., Ye, H., Yang, G., Li, C., Willis, P., Adv. Mater. 15, 1161 (2003).Google Scholar
9. Li, D., Xia, Y., Adv. Mater. 16, 1151 (2004).Google Scholar
10. Baughman, R., Zakhidov, A., de Heer, W., Science 297, 787 (2002).Google Scholar
11. Chand, S., J. Mater. Sci. 35, 1303 (2000).Google Scholar
12. Lau, K., Hui, D., Compos. Part B 33, 263 (2002).Google Scholar
13. Maruyama, B., Alam, K., SAMPE J. 38, 59 (2002).Google Scholar
14. Haung, Z., Zhang, Y., Kotaki, M., Ramakrishna, S., Compos. Sci. Technol. 63, 2223 (2003).Google Scholar
15. Wei, X., Carroll, P., Sneddon, L., Organometallics 23, 163 (2004).Google Scholar
16. Encyclopedia of Materials Characterization, edited by C. Brundle, C. Evens, Jr, S. Wilson (Butterworth-Heinemann, Stoneham, MA, 1992) pp. 467469.Google Scholar
17. Principles of Instrumental Analysis, 5th ed., D. Skoog, F. Holler, T. Nierman (Harcourt Brace and Company, Philadelphia, PA, 1998) pp. 405408.Google Scholar
18. Fridrikh, S., Yu, J., Brenner, M., Rutledge, G., Phys. Rev. Letter. 90, 144502 (2003).Google Scholar
19. Theron, S., Zussman, E., Yarin, A., Polymer 45, 2017 (2004).Google Scholar
20. Wei, X., Welna, D., Bender, J., Sneddon, L., Allcock, H., Mater. Res. Soc. Symp. Proc. (this volume).Google Scholar
21. Welna, D., Wei, X., Bender, J., Sneddon, L., Allcock, H., Adv. Mat. Accepted.Google Scholar
22. Gervais, C., Framery, E., Duriez, C., Maquet, J., Vaultier, M., Babonneau, F., J. Eur. Ceram. Soc. 25, 129 (2005).Google Scholar
23. Interrante, L., Whitmarsh, C., Sherwood, W., Wu, H-J., Lewis, R., Maciel, G., Mater. Res. Soc. Symp. Proc. 346, 593 (2004).Google Scholar