Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T02:18:58.675Z Has data issue: false hasContentIssue false

Enhanced thermoelectric properties of Al-doped ZnO thin films

Published online by Cambridge University Press:  21 August 2013

P. Mele
Affiliation:
Hiroshima University, Institute for Sustainable Sciences and Development, 739-8530 Higashi-Hiroshima, Japan,
S. Saini
Affiliation:
Hiroshima University, Institute for Sustainable Sciences and Development, 739-8530 Higashi-Hiroshima, Japan,
H. Abe
Affiliation:
Hiroshima University, Graduate School for Advanced Sciences of Matter, 739-8530 Higashi-Hiroshima, Japan,
H. Honda
Affiliation:
Hiroshima University, Graduate School for Advanced Sciences of Matter, 739-8530 Higashi-Hiroshima, Japan,
K. Matsumoto
Affiliation:
Kyushu Institute of Technology, Department of Material Science, 804-8550 Kitakyushu, Japan,
K. Miyazaki
Affiliation:
Kyushu Institute of Technology, Department of Mechanical Engineering, 804-8550 Kitakyushu, Japan,
H. Hagino
Affiliation:
Kyushu Institute of Technology, Department of Mechanical Engineering, 804-8550 Kitakyushu, Japan,
A. Ichinose
Affiliation:
CRIEPI, Electric Power Engineering Research Laboratory, 240-0196 Yokosuka, Japan,
Get access

Abstract

We have prepared 2% Al doped ZnO (AZO) thin films on SrTiO3 and Al2O3 substrates by Pulsed Laser Deposition (PLD) technique at various deposition temperatures (Tdep = 300 °C – 600 °C). Transport and thermoelectric properties of AZO thin films were studied in low temperature range (300 K - 600 K). AZO/STO films present superior performance respect to AZO/Al2O3 films deposited at the same temperature, except for films deposited at 400 °C. Best film is the fully c-axis oriented AZO/STO deposited at 300 °C, with electrical conductivity 310 S/cm, Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1K-2 at 300 K. Its performance increases with temperature. For instance, power factor is enhanced up to × 10-3 Wm-1K-2 at 600 K, surpassing the best AZO film previously reported in literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Seebeck, T. J., Abh. Akad. Wiss. Berlin, 289 (1822).Google Scholar
Böttner, H., Mater. Res. Soc. Symp. Proc. N0101, 1166 (2009).Google Scholar
Rowe, D. M., Thermoelectrics Handbook: Macro to Nano. (Boca Raton: CRC/Taylor & Francis, 2006).Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B., Nature 413, 517 (2001).CrossRefGoogle Scholar
Ali, G. M., Chakrabarti, P., J. Phys. D: Appl. Phys. 43, 415103 (2010).CrossRefGoogle Scholar
Gao, P. X. and Wanga, Z. L., J. Appl. Phys. 97, 044304 (2005).CrossRefGoogle Scholar
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., Yang, P., Nat. Mater. 4, 455 (2005).CrossRefGoogle Scholar
Kaur, M., Chauhan, S. V. S., Sinha, S., Bharti, M., Mohan, R., Gupta, S. K., Yakhmi, J. V.: J. Nanosci. Nanotech. 9, 5293 (2009).CrossRefGoogle Scholar
Ohtaki, M., Tsubota, T., Eguchi, K., and Arai, H., J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
Wiff, J. P., Kinemuchi, Y., and Watari, K., Mater. Lett. 63, 2470 (2009).CrossRefGoogle Scholar
Uchino, H., Okamoto, Y., Kawahara, T. and Morimoto, J., Jpn. J. Appl. Phys. 39, 1675 (2000).CrossRefGoogle Scholar
Inoue, Y., Okamoto, M., Kawahara, T., Okamoto, Y. and Morimoto, J., Materials Transactions 467, 1470 (2005).CrossRefGoogle Scholar
Ong, K. P., Singh, D. J., and Wu, P., Phys. Rev. B 83, 115110 (2011).CrossRefGoogle Scholar
Abutaha, A.I., Sarath Kumar, S, R., and Alshareef, H. N., Appl. Phys. Lett. 102, 053507 (2013).CrossRefGoogle Scholar
Vogel-Schäuble, N., Romanyuk, Y. E., Yoon, S., Saji, K. J., Popuolh, S., Pokrant, S., Aguirre, M. H, Wiedenkaff, A., Thin Sol. Films 520, 6869 (2012).CrossRefGoogle Scholar
Singh, B., Khan, Z. A., Khan, I., and Ghosh, S., Appl. Phys. Lett. 97, 241903 (2010).CrossRefGoogle Scholar
Mele, P., Matsumoto, K., Azuma, T., Kamesawa, K., Tanaka, S., Kurosaki, J., Miyazaki, K.: Mater. Res. Soc. Symp. Proc. 1166, 3 (2009).CrossRefGoogle Scholar
Mele, P.: submitted to Mat. Sci. Eng. B, (2013).Google Scholar
For bulk AZO, the value of S, σ and Power Factor at 300K are taken by extrapolation of S and σ from Mele, et al. [18] Google Scholar
Hiramatsu, H., Ohta, H., Seo, W.-S. and Koumoto, K., J. Jpn. Soc. Powder and Powder Metall. 44, 44 (1997).CrossRefGoogle Scholar
Ioffe, A.: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957).Google Scholar
Woodall, J. M., Pettit, G. D., Jackson, T. N., Lanza, C., Kavanagh, K. L., Mayer, J. W., Phys. Rev. Lett. 51, 1783 (1983).CrossRefGoogle Scholar
Waiting, J. R and Paul, D. J., J. Appl. Phys. 110, 114508 (2011).Google Scholar
Park, S. H., Hanada, T., Oh, D. C., Minegishi, T., Goto, H., Fujimoto, G., Park, J. S., Im, I. H., Chang, J. H., Cho, M. W., Yao, T., Appl. Phys. Lett. 91, 231904 (2007).CrossRefGoogle Scholar
Nakamura, T., Yamada, Y., Kusumori, T., Minoura, H., Muto, H., Thin Sol. Films 411, 60 (2002).CrossRefGoogle Scholar