Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:00:28.099Z Has data issue: false hasContentIssue false

Enhancing Tunability and Decreasing Temperature Sensitivity

Published online by Cambridge University Press:  01 February 2011

S. C. Tidrow
Affiliation:
Sensors Electron Devices, Directorate, Army Research Laboratory, Adelphi, MD 20783–1197, U.S.A.
A. Tauber
Affiliation:
Geo-Centers, Inc., New Upper Falls, MA 02164
D. M. Potrepka
Affiliation:
Sensors Electron Devices, Directorate, Army Research Laboratory, Adelphi, MD 20783–1197, U.S.A.
F. Crowne
Affiliation:
Sensors Electron Devices, Directorate, Army Research Laboratory, Adelphi, MD 20783–1197, U.S.A.
B. Rod
Affiliation:
Sensors Electron Devices, Directorate, Army Research Laboratory, Adelphi, MD 20783–1197, U.S.A.
Get access

Abstract

The employment of judicious substitution on B-sites in the perovskite oxide, BaTiO3, has yielded materials suitable for relatively temperature insensitive electric field tunable microwave devices. The properties, single-phase cubic perovskites with tunabilities as large as 30% at 1 V/μm and room temperature that possess low temperature coefficient of dielectric constant and tunability over the majority of the military specified temperature range, -55 to 125 °C, have been achieved in the charge compensated system Ba1-xSrxTi1–2yCyDyO3 where C is Ho, Er, Tm, Lu, Sc, Y, In and D is Ta, Sb with 0 ≤ X ≤ 0.2, and 0 < y ≤ 0.10.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Varadan, V.K., Ghodgaonkar, D.K., Varadan, V.V., Kelly, J.R. and Gilkerdas, P., Microwave Journal, 34, 8 102123 (1991).Google Scholar
2. Babbitt, R.W., Koscica, T.E., and Drach, W.C., Microwave Journal, 6378 (1992).Google Scholar
3. Das, S., Microwaves & RF, 34, 13, 93–94, 98, 100102(1995).Google Scholar
4. Babbitt, R., Koscica, T., Drach, W., Didomenico, L., Integrated Ferroelectrics, 8, 1–2, 6576 (1995).Google Scholar
5. Erker, E.G., Nagra, A.S., Liu, Y., Periaswamy, P., Taylor, T. R., Speck, J. and York, R.A., IEEE Microwave and Guided Wave Letters, 10, 1, 1012(2000).Google Scholar
6. Rao, J.B.L., Patel, P.B., IEEE Antennas and Propagation Society International Symposium, vol. 3, 16241627 (1996).Google Scholar
7. Crowne, F.J. and Tidrow, S. C. in The Ferroelectric Slab Waveguide: a Geometry for Microwave Components that Incorporate Ferroelectric Materials, edited by Tidrow, S.C., Horwitz, J.S., Xi, X. and Levy, J.,(Mater. Res. Soc. Symp. Proc. 720, Pittsburgh, PA, 2002) pp. 185190.Google Scholar
8. Weiss, S., Cahlstrom, R., Kilic, O., Viveiros, E., Tidrow, S.C., Crowne, F.J., Adler, E., Proc. 2002 Antenna Applications Symp., 119129 (2002).Google Scholar
9. De Flaviis, F., Alexopoulos, N.G., IEEE Trans. MTT, 45, 6, 963969 (2003).Google Scholar
10. Jin, Y., Zhou, H., Wu, H., Liu, M., Jiang, W., Huang, Z, Electronic Components & Materials, 22, 2, 3840(2003).Google Scholar
11. Sengupta, L.C., Sengupta, S., Materials Research Innovations, 2, 5, 278–82 (1999).Google Scholar
12. Potrepka, D.M., Tidrow, S.C., Tauber, A., Kirchner, K., Ervin, M., Deb, K., Rod, B., and Crowne, F.J. in The Dependence of Dielectric Properties on Composition Variation in Ba0.6Sr0.4(Y,Ta)yTi1–2yO3 , edited by Tidrow, S.C., Horwitz, J.S., Xi, X. and Levy, J.,(Mater. Res. Soc. Symp. Proc. 720, Pittsburgh, PA, 2002) pp. 161166.Google Scholar
13. Tidrow, S.C., Adler, E., Anthony, T., Wiebach, W., Synowczynski, J., Integrated Ferroelectrics, 28, 151160(2000).Google Scholar
14. Zh. Tekh. Fiz, 24, 10, 1751 (1954).Google Scholar
15. Galasso, F.S., Structure, Properties and Preparation of Perovskite-Type Compounds, 1st ed. (Pergamon Press, Inc., New York, 1969) p. 99103.Google Scholar