Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:31:01.089Z Has data issue: false hasContentIssue false

Enzyme-based Biohybrid Foams Designed for Biodiesel Production and Continuous Flow Heterogeneous Catalysis

Published online by Cambridge University Press:  18 March 2013

Nicolas Brun
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Hervé Deleuze
Affiliation:
Université de Bordeaux, Institut des Sciences Moléculaires (ISM) UMR-5255-CNRS, 351 Cours de la Libération, 33405 Talence, France.
Rénal Backov
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Get access

Abstract

The one pot-synthesis and use of monolithic biohybrid foams in a continuous flow device reported inhere presents the advantages of covalent stabilization of the enzymes, together with a low steric hindrance between proteins and substrates, an optimized mass transport due to the interconnected macroporous network and a rather simplicity in regard of the column in-situ synthetic path. Those features, concerning transesterification (biodiesel production) enzyme- based catalyzed reaction, provide high enzymatic activity addressed with bio-hybrid catalysts bearing unprecedented endurance of continuous catalysis for a two months period of time.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fukuda, H., Kondo, A., Noda, H., Journal of Bioscience and Bioengineering 92, 405 (2001).CrossRefGoogle Scholar
Al-Widyan, M.I., Al-Shyoukh, A.O., Bioresource Technology 85, 253 (2002).CrossRefGoogle Scholar
Nye, M.J., Williamson, T.W., Deshpande, S., Shrader, J.H., Snively, W.H., Yurkewich, T.P., French, C.R., J. Am. Oil Chem. Soc. 60, 1598 (1983).CrossRefGoogle Scholar
Antczak, M.S., Kubiak, A., Antczak, T., Bielecki, S., Renewable Energy 34, 1185 (2009).CrossRefGoogle Scholar
Klibanov, A. M., Science 219, 722 (1983).CrossRefGoogle Scholar
Zhou, G., Chen, Y., Yan, S., Micro. Meso. Mater. 119, 223 (2009).CrossRefGoogle Scholar
Wang, C. F., Zhou, G.W., Li, Y.J, Lu, N., Song, H.B., Zhang, L., Colloids § Surfaces A: Physicochemical and Engineering Aspects 406, 75 (2012)CrossRefGoogle Scholar
Reetz, M. T., Zonta, A., Simplekamp, J., Biotechnology and Bioengineering 49, 527 (1996).3.0.CO;2-L>CrossRefGoogle Scholar
Wang, Z.J., Etienne, M., Quiles, F, G.W., Walcarius, A., Biosens. Bioel. 32, 111 (2012).CrossRefGoogle Scholar
Chen, Y., Xiao, B., Chang, J., Fu, Y., Lv, P., Wang, X., Energy Conversion and Management 50 668 (2009).CrossRefGoogle Scholar
Lozano, P., Garcia-Verdugo, E., Piamtongkam, R., Karbass, N., De Diego, T., Burguete, M. I., Luis, S. V., Iborra, J.L., Adv. Synth. Catal. 349, 1077 (2007).CrossRefGoogle Scholar
Calleri, E., Temporini, C., Furlanetto, S., Loiodice, F., Fracchiolla, G., Massolini, G., Journal of Pharmaceutical and Biomedical Analysis 32, 715 (2003).CrossRefGoogle Scholar
Mateo, C., Grazù, V., Palomo, J.M., Lopez-Gallego, F., Fernandez-Lafuente, R., Guisan, J.M., Nature Protocol 2, 1022 (2007).CrossRefGoogle Scholar
Mateo, C., Fernandez-Lorente, G., Abian, O., Fernandez-Lafuente, R., Guisan, J.M., Biomacromolecule 1, 739 (2000).CrossRefGoogle Scholar
Brun, N., Babeau-Garcia, A., Deleuze, H., Duran, F., Sanchez, C., Ostreicher, V., Backov, R., Chem. Mater. 22, 4555 (2010).CrossRefGoogle Scholar
Rupley, J.A., Careri, G., Adv. Protein Chem. 41, 37 (1991).CrossRefGoogle Scholar
Nie, K., Xie, F., Wang, F., Tan, T., J. Mol. Cat. B: Enzymatic 43, 142 (2006).CrossRefGoogle Scholar
Halim, S.F.A., Kamaruddin, A. H., Fernando, W.J.N., Bioresource Technology 100, 710 (2009).CrossRefGoogle Scholar
Royon, D., daz, M., Ellenrieder, G., Locatelli, S., Bioresource Technology 98, 648 (2007).CrossRefGoogle Scholar
Backov, R., Soft Matter 2, 452 (2006).CrossRefGoogle Scholar
Prouzet, E., Ravaine, S., Sanchez, C., Backov, R., New J. Chem. 32, 1284 (2008).CrossRefGoogle Scholar
Ungureanu, S., Birot, M., Guillaumme, L., Deleuze, H., Babot, O., Achard, M.-F., Popa, M. I., Sanchez, C., Backov, R., Colloids § Surfaces A: Physicochemical and Engineering Aspects 360, 85 (2010).CrossRefGoogle Scholar
Brun, N., Ungureanu, S., Deleuze, H., Backov, R., Chem. Soc. Rev. 40, 771 (2011).CrossRefGoogle Scholar
Brun, N., Julian-Lopez, B., Hesemann, P., Laurent, G., Deleuze, H., Sanchez, C., Achard, M.-F., Backov, R., Chem. Mater 20, 7117 (2008).CrossRefGoogle Scholar
Kinadjian, N, Le Bechec, M., Pigot, T., Dufour, F., Bentaleb, A., Prouzet, E., Lacombe, S., Backov, R., Eur. J. Inorg. Chem., 5350 (2012).Google Scholar