Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:09:39.211Z Has data issue: false hasContentIssue false

Epitaxial Films of Cobalt Disilicide (100) Evaporated onto Si (100) from a Mixed Source

Published online by Cambridge University Press:  15 February 2011

P. T. Goeller
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Z. Wang
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
D. E. Sayers
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
J. T. Glass
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Thin films of (100) oriented CoSi2 have been electron beam evaporated onto Si(100)substrates from a mixed Co-Si target. A sharp c(2×2) low energy electron diffraction (LEED)pattern resulted after annealing the films to 800°C. Extended x-ray absorption fine structure (EXAFS) of the film indicated the phase to be CoSi2. Quantitative x-ray photoelectron spectroscopy (XPS) analysis revealed the surface of the film to be slightly Si rich, indicating the Si terminated CoSi2 variant. Analysis of transmission electron microscope (TEM) diffraction patterns also provided evidence of the (100) orientation of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yalisove, S. M., Tung, R. T. & Batstone, J. L., Materials Research Society Symposium edited by (Materials Research Society: 1988) 439–45.Google Scholar
2. Tung, R. T., Schrey, F. & Yalisove, S. M., Applied Physics Letters 55, 2005–7 (1989).Google Scholar
3. Jimenez, J. R., Hsiung, L. M., Rajan, K., Schowalter, L. J., Hashimoto, S., Thompson, R. D. & Iyer, S. S., Appl. Phys. Lett. 57, 2811–3 (1990).Google Scholar
4. Gallego, J. M., Miranda, R., Molodtsov, S., Laubschat, C. & Kaindi, G., Surface Science 239, 203–12 (1990).Google Scholar
5. Haderbache, L., Wetzel, P., Pirri, C., Peruchetti, J. C., Bolmont, D. & Gewinner, G., Thin Solid Films 184, 317323 (1990).Google Scholar
6. Meyerheim, H. L., Dobler, U. & Puschmann, A., Physical Review B 44, 57385744 (1991).Google Scholar
7. Schowalter, L. J., Jimenez, J. R., Hsiung, L. M., Rajan, K., Hashimoto, S., Thompson, R. D. & Iyer, S. S., Journal of Crystal Growth 111,948956 (1991).Google Scholar
8. Schwerdtfeger, K. & Engell, H.-J., Archiv fuer das Eisenhuttenwesen 35, 533-540 (1964).Google Scholar
9. Goeller, P. T., Substrate engineering for the chemical vapor deposition of diamond (North Carolina State University, 1995).Google Scholar
10. Fenner, D. B., Biegelsen, D. K. & Bringans, R. D., Journal of Applied Physics 66, 419424 (1989).Google Scholar
11. Feldman, L. C. & Mayer, J. W., Fundamentals of Surface and Thin Film Analysis, (North-Holland, New York, 1986), p. 228.Google Scholar
12. Yeh, J. J. & Lindau, I., Atomic Data and Nuclear Data Tables 32, 1155 (1985).Google Scholar