Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T11:30:45.867Z Has data issue: false hasContentIssue false

Er-Implanted Porous Silicon: a Novel Material for Si-Based Infrared LEDs

Published online by Cambridge University Press:  28 February 2011

Fereydoon Namavar
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
F. Lu
Affiliation:
Hanscom AFB, Bedford, MA 01730
C.H. Perry
Affiliation:
Northeastern University, Boston, MA
A. Cremins
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
N.M. Kalkhoran
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
J.T. Daly
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
R.A. Soref
Affiliation:
Hanscom AFB, Bedford, MA 01730
Get access

Abstract

We have demonstrated a strong, room-temperature, 1.54 μm emission from erbium-implanted at 190 keV into red-emitting porous silicon. Luminescence data showed that the intensity of infrared (IR) emission from Er implanted porous Si annealed at ≤ 650°C, was a few orders of magnitude stronger than Er implanted quartz produced under identical conditions, and was almost comparable to IR emission from In0.53Ga0.47As material which is used for commercial IR light-emitting diodes (LEDs).

The strong IR emission (much higher than Er in quartz) and the weak temperature dependency of Er in porous Si, which is similar to Er3+ in wide-bandgap semiconductors, suggests that Er is not in SiO2 or Si with bulk properties but, may be confined in Si light-emitting nanostructures. Porous Si is a good substrate for rare earth elements because: 1) a high concentration of optically active Er3+ can be obtained by implanting at about 200 keV, 2) porous Si and bulk Si are transparent to 1.54 μm emission therefore, device fabrication is simplified, and 3) although the external quantum efficiency of visible light from porous Si is compromised because of self-absorption, it can be used to pump Er3+.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Namavar, F., Maruska, H.P., and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
3 Richter, A., Lang, W., Steiner, P., Lozlowski, F., and Sandmeier, H., Mat. Res. Soc. Symp. Proc. 246, 209 (1991).Google Scholar
4 Koshida, N. and Katsuno, M., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
5 Maruska, H.P., Namavar, F., and Kalkhoran, N.M., Appl. Phys. Lett. 61, 1338 (1992).Google Scholar
6 Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
7 Namavar, F., Kalkhoran, N.M., and Maruska, H.P., U.S. Patent No. 5,272,355 (Dec. 21, 1993).Google Scholar
8 Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
9 Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
10 Pomrenke, G.S., Ennen, H., and Haydl, W., J. Appl. Phys. 59, 601 (1986).Google Scholar
11 Xie, Y.-H., Fitzgerald, E.A., and Mii, Y.J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
12 Eaglesham, D.J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Benton, J.L., Polman, A., Xie, Y.-H., and Kimerling, L.C., Appl. Phys. Lett. 58, 2797 (1991).Google Scholar
13 Gupta, R., Ahn, S., Michel, J., Palm, J., Ren, F.Y.G., Kimerling, L.C., Fall 1994 MRS Meeting, A15.4 (1994).Google Scholar
14 Polman, A., Custer, J.S., Snoeks, E., and van den Hoven, G.N., Appl. Phys. Lett. 62, 507 (1993).Google Scholar
15 Favennec, P.N., L'Harldon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Mat. Res. Soc. Symp. Proc. 301, 181 (1993).Google Scholar
16 Michel, J., Kimerling, L.C., Benton, J.L., Eaglesham, D.J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., and Ferrante, R.F., Mat. Sci. Forum 83–87, 653658 (1992).Google Scholar
17 Adler, D.L., Jacobson, D.C., Eaglesham, D.J., Marcus, M.A., Benton, J.L., Poate, J.M., and Citrin, P.H., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
18 Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
19 Priolo, F., Franzo, G., Coffa, S., Polman, A., Bellani, V., Camera, A., and Spinella, C., Mat. Res. Soc. Symp. Proc. 235, 285 (1992).Google Scholar