Published online by Cambridge University Press: 01 February 2011
The development, in the frame of the European ULTMAT project, of alloys offering at least 150°C surface temperature increase above the Ni-based superalloys' capability is presented. The expected achievement of the project is a thorough evaluation of the capability of refractory metal (Nb and Mo) silicide based multiphase materials to withstand enhanced temperature turbine service conditions (up to 1300°C). This is based on microstructural, mechanical, physical and environmental investigations in close connection with industrial scale material processing and component fabrication technologies. The paper presents an overview of the project results. Base materials are the metal/intermetallic ductile/brittle composites in the Nb-Nb5Si3 and Mo-Si-B systems. Improvements in high temperature creep resistance (up to 1300°C) as well as oxidation resistance (700°C to 1300°C) have been obtained. Processing routes have been developed (ingot and powder metallurgy) that allowed the manufacture of complex shaped parts.