No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We report on the boron-doping dependence of the structural and electronic properties in nanocrystalline silicon (nc-Si:H) films directly deposited by plasma- enhanced chemical vapor deposition (PECVD). The crystallinity, micro-structure, and dark conductivity of the films were investigated by gradually varying the ratio of trimethylboron [B(CH3)3 or TMB] to silane (SiH4) from 0.1 to 2 %. It was found that the low level of boron doping (< 0.2 %) first compensated the nc-Si:H material which demonstrates slightly n-type properties. As the doping increased up to 0.5 %, the maximum dark conductivity (ód) of 1.11 S/cm was obtained while high crystalline fraction (Xc) of the films (over 70 %) was maintained. However, further increase in a TMB-to-SiH4 ratio reduced ód to the order of 10-7 S/cm due to a phase transition of the films from nanocrystalline to amorphous, which was indicated by Raman spectra measurements.
P-channel nc-Si:H thin film transistors (TFTs) with top gate and staggered source/drain contacts were fabricated using the developed p+ nc-Si:H layer. The fabricated TFT exhibits a threshold voltage (VTp) of -26.2 V and field effective mobility of holes (μp) of 0.24 cm2/V·s.