Published online by Cambridge University Press: 01 February 2011
Disposal in deep, stable bedrock is currently one concept for isolating high-level wastes from the environment. Repository for high-level waste in rock excavated using different drilling techniques is surrounded by an excavation damaged zone (EDZ) which properties have been changed. The micro fracturing of samples taken from the experimental deposition holes in the underground Hard Rock Laboratory at Äspö were investigated by the 14C polymethylmetha-crylate (14C-PMMA) method and scanning electron microscopy (SEM) to evaluate the impact of EDZ on migration. The porosity of the damaged rock zone is clearly higher than the porosity of undisturbed rock. The thickness of the crushed zone with significantly higher porosity is a few millimetres and the average depth of the damaged zone (i.e. a clear increase in porosity found) is from 5 to 20 mm from the hole wall. The apertures of the inter- and intragranular fractures in the crushed zone varied from 5 to 30 μm according to SEM examination. Earlier results of porosity, diffusivity and permeability measurements in granites were compiled and the results of the porosity values of Äspö diorite were compared to the porosity values measured in other types of granites. The results were compiled in permeability-diffusivity-porosity space and were found to form a plane that could be used to estimate the range of diffusivity and permeability of the Äspö diorite.