Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:47:14.745Z Has data issue: false hasContentIssue false

Excimer Laser Ablation of Sodium Trisilicate Glass

Published online by Cambridge University Press:  25 February 2011

P. A. Eschbach
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164
J. T. Dickinson
Affiliation:
Department of Physics, Washington State University, Pullman, WA 99164
L. R. Pederson
Affiliation:
Battelle Pacific Northwest Laboratories, Richland, WA 99352
Get access

Abstract

We examine effects resulting from the irradiation of glassy sodium trisilicate (Na2O 3SiO2) with 248 nm excimer laser light at fluences from 1–5 J/cm2. We observe a threshold for the onset of etching of the surface at 3 J/cm2. We present SEM images of the resulting surface topography under etching conditions as well as recent measurements of the particle emission and photon emission from atoms leaving the surface region. A clear correlation is observed between this etching threshold and a) onset of emission of fast excited neutrals, as well as b) the appearance of atomic Na D resonance radiation emitted from particles up to several cm from the surface. We also present identifiction of the emitted positive ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braren, B. and Srinivasan, R., J. Vac. Sci. Technol. B 6, 537 (1988).CrossRefGoogle Scholar
2. Shinn, G. B., Steigerwald, F., Stiegler, H., Sauerbrey, R., Tittel, F. K., and Wilson, W. L. Jr., J. Vac. Sci. Technol. B 4, 1273 (1986).CrossRefGoogle Scholar
3. Hanabusa, M., Suzuki, M., and Nishigaki, S., Appl. Phys. Lett. 38, 385 (1981).CrossRefGoogle Scholar
4. Kelly, R. and Rothenberg, J. E., Nucl. Instr. and Meth. in Phys. Res. 7/8, 755 (1985).Google Scholar
5. Kang, H. and Beauchamp, J. L., J. Phys. Chem. 89, 3364 (1985).Google Scholar
6. Rothenberg, J. E. and Koren, G., Appl. Phys. Lett. 44, 664 (1984).CrossRefGoogle Scholar
7. Rothenberg, J. E., Koren, G., and Ritsko, J. J., J. Appl. Phys. 57, 5072 (1985).Google Scholar
8. Dreyfus, R. W., Kelly, R., and Walkup, R. E., Appl. Phys. Lett. 49, 1478 (1986).CrossRefGoogle Scholar
9. Eschbach, P. A., Dickinson, J. T., Langford, S. C., and Pederson, L. R., J. Vac. Sci. Technol. A, in press.Google Scholar
10. Baer, D. R., Pederson, L. R., and McVay, G. L., J. Vac. Sci. Technol. A 2, 738 (1984).CrossRefGoogle Scholar
11. Craig, J. H. and Hock, J. L., J. Vac. Sci. Technol. 17, 1362 (1980).Google Scholar
12. Sigel, G. H. Jr., J. Non-Cryst. Solids 13, 372 (1973/1974).Google Scholar
13. Devine, R.A.B., Fiori, C., and Robertson, J., MRS Symp. Proc. 61, 177 (1986).Google Scholar
14. Kokura, K., Tomozawa, M., and MacCrone, R. K., to appear in J. Non-Cryst. Solids.Google Scholar
15. Green, J. M., Silfvast, W. T., and Wood, O. R. II, J. Appl. Phys. 48, 2753 (1977).CrossRefGoogle Scholar
16. Walkup, R. E., Jasinski, J. M., and Dreyfus, R. W., Appl. Phys. Lett. 48, 1690 (1986).Google Scholar
17. Mackey, J. H., Smith, H. L., and Halperin, A., J. Phys. Chem. Solids 27, 1759(1966).CrossRefGoogle Scholar
18. Mendel, C. W. and Olsen, J. N., Phys. Rev. Lett. 34, 859 (1975).Google Scholar
19. Utterback, N. G., Tang, S. P., and Friichtenicht, J. F., Phys. Fluids 12, 900 (1976).Google Scholar