Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T05:59:54.079Z Has data issue: false hasContentIssue false

Excited State Absorption in Dendrimers Incorporating Diphenylaminodiphenylpolyene Moieties Via Photo-Induced Electron Transfer

Published online by Cambridge University Press:  10 February 2011

W. Sonnenberg
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, wendi@chemistry-montana-edu
A Hyfield
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, wendi@chemistry-montana-edu
K Short
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, wendi@chemistry-montana-edu
L. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, wendi@chemistry-montana-edu
C. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, wendi@chemistry-montana-edu
Get access

Abstract

During the past decade there has been considerable progress in the design of new organic materials for optical power limiting (OPL) applications. Among the more promising of the new material approaches are reverse saturable absorbers (RSAs) which derive their optical limiting capability from the photogeneration of highly absorbing transient excited states. Most of the previous research in this field has focused on excited state absorption from singlet or triplet states whose cross-sections are greater than the original S0 – S1 transition- However, other transient states, such as polaronic radical ions or bipolaronic diions, formed by photo-induced electron transfer, are attractive alternatives. We have initiated studies to determine if these transient charge states can be photo-generated efficiently, and if their excited states absorption and lifetimes are acceptable for current optical power limiting requirements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderberg, I. B. and Walbarsht, M. L., Laser Weapons: The Dawn of a New Military Age, Plenum Press, New York, 1992.Google Scholar
2. Miller, M. J., Mott, A. G. and Ketchel, B. P., Proc. SPIE 3472, p. 24 (1998).Google Scholar
3. Spangler, C. W., J. Mater. Chem. 9, p. 2013 (1999).Google Scholar
4. Su, W. and Cooper, T. M., Chem. Mater. 10, p. 1212 (1998).Google Scholar
5. Wei, T. H, Hagan, D. J., Spence, M. J., Stryland, E. W. Van, Perry, J W. and Coulter, D. R., Appl. Phys. B54, p.46 (1992).Google Scholar
6. Mansour, K., Alvarez, D., Perry, K. J., Choong, I., Marder, S. R. and Perry, J. W., Proc SPIE 1853, p. 132 (1993).Google Scholar
7. Perry, J. W., Mansour, K., Marder, S. R., Perry, K. J., Alvarez, D. and Choong, I. Opt. Lett. 19, p. 625 (1994).Google Scholar
8. Spangler, C. W. and Liu, P. K., J. Chem. Soc. Perkin Trans. 2, p. 1959 (1992).Google Scholar
9. Spangler, C. W. and He, M. Q., J. Chem. Soc. Perkin Trans. 1, p. 715 (1995).Google Scholar
10. Spangler, C. W. and He, M., Handbook of Organic Conductive Molecules and Polymers: Vol. 2. Conductive Polymers: Synthesis and Electrical Properties, ed. Nalwa, H., John Wiley and Sons, Ltd., Chichester, 1997, pp.389414.Google Scholar
11. Spangler, C. W., Faircloth, T., Elandaloussi, E. H. and Reeves, B., Mat. Res. Soc. Symp. Proc. 488, p. 283 (1998).Google Scholar
12. Spangler, C. W. and Elandaloussi, E. H., Polym. Prepr. 39(2), p. 1055 (1998).Google Scholar
13. Saracifici, N. S. and Heeger, A. J., Handbook of Organic Conductive Molecules and Polymers: Vol. 1. Charge-Transfer Salts, Fullerenes and Pholoconduclors, ed. Nalwa, H., John Wiley and Sons, Ltd., Chichester, 1997, pp. 414455.Google Scholar
14. Saraciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, p. 1474 (1992).Google Scholar
15. Janssen, R. A. J., Moses, D. and Saracifici, N. S., J. Chem. Phys. 101, p. 9519 (1994).Google Scholar
16. Han, Y. N., Sonnenberg, W., Short, K. W., Hyfield, A., and Spangler, L. H., Mat. Res. Soc. Symp. Proc. 597, (1999).Google Scholar
17. Janssen, R. A-J., Christiaans, M. P. T., Pakbaz, K., Moses, D., Hummelen, J. C. and Saraciftci, N. S., J. Chem.Phys. 102, p. 2628 (1995).Google Scholar