Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T15:04:06.429Z Has data issue: true hasContentIssue false

Fabrication and device characteristics of bulk GaN-based Schottky diodes

Published online by Cambridge University Press:  01 February 2011

Yi Zhou
Affiliation:
zhouyi1@auburn.edu, Auburn University, Department of Physics, United States
Dake Wang
Affiliation:
wangda1@auburn.edu, Auburn University, Department of Physics, United States
Claude Ahyi
Affiliation:
ahyiaya@auburn.edu, Auburn University, Department of Physics, United States
Chin-Che Tin
Affiliation:
cctin@physics.auburn.edu, Auburn University, Department of Physics, United States
John Williams
Affiliation:
williams@physics.auburn.edu, Auburn University, Department of Physics, United States
Minseo Park
Affiliation:
park@physics.auburn.edu, Auburn University, Department of Physics, United States
N. Mark Williams
Affiliation:
williams@kymatech.com, Kyma Technologies, Inc., United States
Andrew Hanser
Affiliation:
hanser@kymatech.com, Kyma Technologies, Inc., United States
Get access

Abstract

In this investigation, Schottky diodes with different device sizes (150μm, 420μm and 700μm) were fabricated on the Ga-face of a free-standing n--GaN wafer produced by Kyma Technologies, Inc. Full area back side ohmic contact was prepared on the N-face of the bulk GaN using Ti/Al. Without any edge-termination scheme, a relatively high reverse breakdown voltage of 240V was achieved. The reverse breakdown voltage decreases as the device size increases. The forward turn-on voltage was as low as 2.4V at room temperature for the 150μm diameter Schottky diodes. The best on-state resistance was 7.56 mΩcm2 for diodes with VB=240V, producing a figure-of-merit (VB2/RON) of 7.6 MWcm-2. The Schottky diode also showed an extremely short reverse recovery time (< 20 ns) switching from forward bias to reverse bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Onstine, A. H., Gila, B. P., Ren, F., Lou, B. and Kim, J., Materials Today, June 2002, ISSN 13697021 Elsevier Science Ltd 2002.Google Scholar
2 Pearton, S. J., Ren, F., Zhang, A. P., Lee, K. P., Materials Science and Engineering R 30, 55 (2000).CrossRefGoogle Scholar
3 Morkoc, H., Nitride Semiconductors and Devices, p. 15, Springer-Verlag Berlin Heidelberg, 1999.CrossRefGoogle Scholar
4 Pearton, S. J. and Ren, F., Advanced Materials, 12, Issue 21 (2000).3.0.CO;2-T>CrossRefGoogle Scholar
5 Dang, G. T., Zhang, A. P., Mshewa, M. M., Ren, F., Chyi, J. -I., Lee, C. -M., Chuo, C. C., Chi, G. C., Han, J., Chu, S. N. G., Wilson, R. G., Cao, X. A. and Pearton, S. J., J. Vac. Sci. Technol. A 18(4) (2000).CrossRefGoogle Scholar
6 Zhang, A. P., Dang, G., Ren, F., Han, J., Cho, H., Pearton, S. J., Chyi, J. -I., Nee, T. -E., Lee, C. M., Chuo, C. C. and Chu, S. N. G., Solid-State Electronics 44, 1157 (2000).CrossRefGoogle Scholar
7 Dang, G. T., Zhang, A. P., Ren, F., Cao, X. A., Pearton, S. J., Cho, H., Han, J., Chyi, J. -I., Lee, C. -M., Chuo, C. -C., Chu, S. N. G., Wilson, R. G., IEEE Transactions on Electro Devices. 47, 692 (2000)CrossRefGoogle Scholar
8 Zhang, A. P., Dang, G., Ren, F., Han, J., Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Redwing, J. M., Cao, X. A. and Pearton, S. J., Applied Physics Letters, 76, 3816 (2000).CrossRefGoogle Scholar
9 Bandic, Z. Z., Bridger, P. M., Piquette, E. C., McGill, T. C., Vaudo, R. P., Phanse, V. M. and Redwing, J. M., Applied Physics Letters, 74, 1266 (1999).CrossRefGoogle Scholar
10 Chyi, J. -I., Lee, C. -M., Chuo, C. -C., Cao, X. A., Dang, G. T., Zhang, A. P., Ren, F., Pearton, S. J., Chu, S. N. G., Wilson, R. G., Solid-State Electronics 44, 613 (2000).CrossRefGoogle Scholar
11 Zhang, A. P., Johnson, J. W., Ren, F., Han, J., Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Redwing, J. M., Lee, K. P. and Pearton, S. J., Applied Physics Letters, 78, 823 (2001).CrossRefGoogle Scholar
12 Johnson, J. W., LaRoch, J. R., Ren, F., Gila, B. P., Overberg, M. E., Abernathy, C. R., Chyi, J. -I., Chuo, C. C., Nee, T. E., Lee, C. M., Lee, K. P., Park, S. S., Park, Y. J., Pearton, S. J., Solid-State Electronics 45, 405 (2001).CrossRefGoogle Scholar
13 Johnson, J. W., Zhang, A. P., Luo, W. -B., Ren, F., Pearton, S. J., Park, S. S., Park, Y. J., and Chyi, J. -I., IEEE Transactions on Electron devices, 49, 32 (2002).Google Scholar
14 Kang, B. S., Ren, F., Irokawa, Y., Baik, K. W., Pearton, S. J., Pan, C. -C., Chen, G. -T., Chyi, J. -I., Ko, H. -J. and Lee, H. -Y., J. Vac. Sci. Technol. B 22(2), 710 (2004).CrossRefGoogle Scholar
15 Baik, K. H., Irokawa, Y., Kim, J., LaRoche, J. R., Ren, F., Park, S. S., Park, Y. J., Pearton, S. J., Applied Physics Letters, 83, 3192 (2003).CrossRefGoogle Scholar
16 Pearton, S. J., Ren, F., Zhang, A. P., Dang, G., Cao, X. A., Lee, K. P., Cho, H., Gila, B. P., Johnson, J. W., Monier, C., Abernathy, C. R., Han, J., Baca, A. G., Chyi, J. -I., Lee, C. -M., Nee, T. -E., Chuo, C. -C., Chu, S. N. G., Materials Science and Engineering B 82, 227 (2001).CrossRefGoogle Scholar
17 Trivedi, M. and Shenai, K., Journal of Applied Physics, 85, 6889 (1999).CrossRefGoogle Scholar