No CrossRef data available.
Article contents
Fabrication of antiferromagnetic Co/Cr2O3 bilayer thin films for exchange bias studies
Published online by Cambridge University Press: 12 July 2019
Abstract
This is a copy of the slides presented at the meeting but not formally written up for the volume.
In order to pursue device applications of magnetoelectric Cr2O3, we have fabricated epitaxial Cr2O3 thin films on (001), (110) and (101) oriented Nb doped TiO2 by pulsed laser deposition. The Cr2O3 films with different thicknesses (0.3 1 ¦Ìm) showed extremely smooth surfaces with rms roughness ¡Ö 0.3 nm (for 10 X 10 ¦Ìm2) as measured by AFM for all 3 different orientations. The films display robust insulating properties at room temperature with leakage current density of 8.9 X 10-6 A/cm2 at 10 kV/cm for 300 nm thick films. In order to investigate exchange bias, we fabricated bilayer films of Cr2O3/Co with all 3 orientations. The magnetic properties of the films were measured using SQUID and the magnetic optical Kerr effect (MOKE). From the Cr2O3/Co film grown on a (110) oriented TiO2, we clearly observe exchange bias of ¡Ö 13 Oe with a coercive field of 115 Oe upon cooling from 320 K to 30 K in a 1 T magnetic field. The microstructural properties of the bilayers and the effect of electric field on the exchange bias behavior were investigated using TEM, VSM and MOKE. Comparison of exchange bias with BiFeO3 and TbMnO3 multiferroic thin films will also be discussed. This work is supported by W. M. Keck Foundation, ONR grant No. N00014-01-1-0761, N00014-04-1-0085, and the NSF under grants DMR-00-94265 (CAREER), NSF DMR-00-0231291, NSF 0095166, NSF-MRSEC Award No. DMR-00-0520471. We acknowledge use of the Nanoscale Imaging, Spectroscopy, and Properties (NISP) Laboratory for TEM characterization.
- Type
- Slide Presentations
- Information
- Copyright
- Copyright © Materials Research Society 2007