Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:13:35.385Z Has data issue: false hasContentIssue false

Fabrication of CdTe Quantum Dot Arrays on GaAs utilizng Nanoporous Alumina Masks

Published online by Cambridge University Press:  21 March 2011

Mi Jung
Affiliation:
Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
Hong Seok Lee
Affiliation:
Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
Hong Lee Park
Affiliation:
Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea
Sun-Il Mho
Affiliation:
Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
Get access

Abstract

The uniformity and reproducibility of the CdTe QD arrays on the GaAs substrates can be improved by using a nanoporous mask. The CdTe QDs on the GaAs substrate were grown by a molecular beam epitaxy (MBE) method. The nanoporous alumina masks used for the fabrication of QD arrays have the thickness from 0.3 νm to 5 νm with the nanochannels of ∼ 80 nm diameter and the pore density of ∼ 1010cm−2. When the thickness of the alumina mask used for the CdTe QD growth was about 300 nm, the CdTe QD arrays formed as a replica of the nanochannels of the mask. Smaller self-assembled CdTe QDs located randomly were produced by using the thicker nanochannel mask than 0.5 νm. The thickness of the nanochannel mask controls the size of the CdTe/GaAs QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, L., Mawbray, D. J., Skolnic, M. S., Hoplcinson, M. and Hill, G., Appl. Phys. Lett. 73, 969 (1998).Google Scholar
2. Huffker, D. L.. Park, G., Zou, Z., Shchokin, O. B., and Deppe, P.G., Appl. Phys. Lett. 73, 2564 (1998).Google Scholar
3. Lee, H. S., Lee, K. H., Choi, J. C., Kim, T. W., and Park, H.L., Appl. Phys. Lett. 81, 3750 (2002).Google Scholar
4. Jang, M. S., Oh, S. H., Lee, H. S., Choi, J. C., Park, H.L., Kim, T.W., Choo, D. C., and Lee, D. U., Appl. Phys. Lett. 81, 993 (2002).Google Scholar
5. Mei, X., Kim, D., Guo, Q.X. and Ruda, H.E., Appl. Phys. Lett. 81, 361 (2002).Google Scholar
6. Mei, X., Blumin, M., Kim, D., Wu, Z. H., and Ruda, H E., J. Crystal Growth 251, 253 (2003).Google Scholar
7. Mei, X., Blumin, M., Sun, M., Kim, D., Wu, Z., Guo, Q. X., and Ruda, H E., Appl. Phys. Lett. 82, 967 (2003).Google Scholar
8. Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
9. Jung, M., Kim, H. G., Lee, J. K., Joo, O. S., and Mho, S. I., Electrochimica Acta (in press)Google Scholar