Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T07:10:20.909Z Has data issue: false hasContentIssue false

Fabrication of III-V Semiconductor Quantum Dots in Porous Glass.

Published online by Cambridge University Press:  26 February 2011

John C. Luong
Affiliation:
Corning Glass Works, RD & E Laboratories, Corning, N.Y. 14831.
Nicholas F. Borrelli
Affiliation:
Corning Glass Works, RD & E Laboratories, Corning, N.Y. 14831.
Get access

Abstract

Spatially quantized systems of III–V compounds have, in recent years, attracted considerable theoretical interest. However, the fabrication of quantum dots, a three-dimensionally quantum-confined microstructure, is particularly cumbersome and requires sophisticated lateral patterning techniques. A method, reported recently, which utilizes the microporosity of Vycor brand porous glass to produce quantum-confined microcrystals of II–VI and IV–VI semiconductors, is now extended to the fabrication of III–V quantum dots, by incorporating a microwave plasma assisted MOCVD technique. In this process, organometallic precursors impregnated in porous glass can be effectively cracked to deposit III–V microcrystals in glass. The results are discussed in light of the quantum size effect manifested by the optical absorption and photoluminescence data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Esaki, L., IEEE J. Quantum Electron. QE-22, 1611 (1986), and other invited papers within this special issue.CrossRefGoogle Scholar
2. Schmitt-Rink, S., Chemla, D.S. and Miller, D.A.B., Phys. Rev. B 32, 6601 (1985).Google Scholar
3. Miller, D.A.B., Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H. and Burrus, C.A., Phys. Rev. B 32, 1043 (1985).CrossRefGoogle Scholar
4. Chang, Y-C, Chang, L.L. and Esaki, L., Appl. Phys. Lett. 47, 1324 (1985).CrossRefGoogle Scholar
5. Efros, AI.L. and Efros, A.L., Soy. Phys. Semicond. 16, 772 (1982).Google Scholar
6. Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
7. Vahala, K.J., IEEE J. Quantum Electron. QE–24, 523 (1988) and references therein.CrossRefGoogle Scholar
8. Miller, D.A.B., Chemla, D.S. and Schmitt-Rink, S., Appl. Phys. Lett.. 52 2154 (1988).Google Scholar
9. Temkin, H., Dolan, G.J., Panish, M.B. and Chu, S.N.G., AppI. Phys. Lett.. 50, 413 (1987), and references therein.Google Scholar
10. Kapon, E., Yun, C.P., Harbison, J.P., Bhat, R. and Hwang, D.W., presented at the First Annual Meeting of IEEE Lasers and Electro-Optics Society, 2–4 November 1988, Santa Clara, CA., Paper No. OE2.1.Google Scholar
11. Luong, J.C., Superlattices and Microstructures, 4, 385 (1988).Google Scholar
12. Ghandhi, S. and Bhat, I.B., MRS Bulletin XIII, No. 11AI.L, 37 (1988).Google Scholar
13. Donnelly, V.M., McCrary, V.R., Applebaum, A., Brasen, D. and Lowe, W.P., T. Appl. Phys. 61, 1410 (1987).Google Scholar
14. Pande, K.P. and Aina, O., J. Vac. Sci. Technol. A 4, 673 (1986).CrossRefGoogle Scholar
15. Huelsman, A.D., Reif, R. and Fonstad, C.G., Appl. Phys. Lett. 50, 206 (1987).CrossRefGoogle Scholar
16. Zaouk, A., Lebugle, A. and Constant, G., J. Crystal Growth 46, 415 (1979).CrossRefGoogle Scholar
17. Luong, J.C., Borrelli, N.F., Schreurs, J.W.H. and Morse, D.L., in Photon,. Beam. and plasma stimulated chemical processes at surfaces.eds Donnelly, V.M., Herman, I.P. and Hirose, M. (Mater. Res. Soc. Proc. 75, Pittsburg, PA 1987) 671.Google Scholar
18. 't Hooft, G. W., van der Poel, W.A.J.A., Molenkamp, L.W. and Foxon, C.T., Phys. Rev. B 35, 8281 (1987).CrossRefGoogle Scholar
19. Wu, W-Y, Schulman, J.N., Hsu, T.Y. and Efron, U., Appl. Phys. Lett. 51, 710 (1987).Google Scholar
20. Borrelli, N.F., Hall, D.W., Holland, H.J. and Smith, D.W., J. Appl. Phys. 61, 5399 (1987).Google Scholar