Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:03:00.361Z Has data issue: false hasContentIssue false

Faceting of Single-Crystal SrTiO3 During Wet Chemical Etching

Published online by Cambridge University Press:  15 March 2011

G. C. Spalding
Affiliation:
Department of Physics, Illinois Wesleyan University, Bloomington, IL 61702, USA
W. L. Murphy
Affiliation:
Department of Physics, Illinois Wesleyan University, Bloomington, IL 61702, USA
T. M. Davidsmeier
Affiliation:
Department of Physics, Illinois Wesleyan University, Bloomington, IL 61702, USA
J. E. Elenewski
Affiliation:
Department of Physics, Illinois Wesleyan University, Bloomington, IL 61702, USA
Get access

Abstract

We use an Atomic Force Microscope (AFM) to study changes in the surface of single-crystal SrTiO3 etched in HF-based solutions. Attention in this work has been focused upon observations of pyramidal pitting – both because of an interest in avoiding etch pits during substrate preparation prior to heteroepitaxial growth, and because of an interest in micromachining this highly polarizable material. We note that (110) SrTiO3 is surprisingly robust against the formation of pits, while pitting is significant on {100} surfaces. Particular etch rates have been measured, and we discuss anisotropies in the rates of dissolution. These data are combined to extract a macroscopic model describing processes relevant to the most extreme pitting, which we show to be associated with surface defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Achutharaman, V.S., Beauchamp, K.M., Chandrasekhar, N., Spalding, G.C., Johnson, B.R., Goldman, A.M., Thin Solid Films 216, 14 (1992).Google Scholar
2. Achutharaman, V.S., Kraus, P., Vas'ko, V., Nordman, C., Goldman, A.M., Appl. Phys. Lett. 67, 1019 (1995); V.A. Vas'ko, C.A. Nordman, P.A. Kraus, V.S. Achutharaman, A.R. Ruosi, A.M. Goldman Appl. Phys. Lett. 68, 2571 (1996).Google Scholar
3. Kawasaki, Masashi, Takahashi, Kazuhiro, Maeda, Tatsuro, Tsuchiya, Ryuto, Shinohara, Makoto, Ishiyama, Osamu, Yonezawa, Takuzo, Yoshimoto, Mamoru, Koinuma, Hideomi, Science 266, 1540 (1994).Google Scholar
4. Polli, Andrew D., Wagner, Thomas, Rühle, Manfred, Surf. Sci. 429, 237 (1999).Google Scholar
5. Koster, Gertjan, Kropman, Boike L., Guus, J. H. Rijnders, M., Dave, H. Blank, A., Rogalla, Horst, Appl. Phys. Lett. 73, 2920 (1998).Google Scholar
6. Barabasi, Albert-Laszlo Stanley, H. Eugene, Fractal Concepts in Surface Growth (Cambridge Univ. Pr., 1995).Google Scholar
7. Rhodes, W. H., J. Am. Ceram. Soc. 49, 110 (1966)Google Scholar
8. Spalding, G. C., Murphy, W. L., Davidsmeier, T., APS Bulletin 43, 623 (1998).Google Scholar
9. Elenewski, J. E. and Spalding, G. C., http://titan.iwu.edu/∼gspaldin/stitch.htmlGoogle Scholar
10. Bean, Kenneth E., IEEE Trans. El. Dev. ED-25, 1185 (1978).Google Scholar
11. Elwenspoek, M., J. Electrochem. Soc. 140, 2075 (1993); Silicon Micromachining (Cambridge Univ. Pr., 1999), pp. 45-64.Google Scholar
12. Flidr, J., Huang, Y.C., Newton, T.A., Hines, M.A., J. Chem. Phys. 108, 5542 (1998).Google Scholar
13. Heimann, Robert B., Crystals, vol. 8 (Springer-Verlag, 1982), p. 173224.Google Scholar
14. Sangwal, K., Etching of Crystals (North-Holland, 1987).Google Scholar
15. Haase, Rolf, Thermodynamics of Irreversible Processes (Dover, 1990), p. 39.Google Scholar
16. Blakemore, J.S., Solid State Physics, 2nd ed. (Saunders, 1974), p. 80.Google Scholar