Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T05:47:00.590Z Has data issue: false hasContentIssue false

Fatigue in PZT Thin Films

Published online by Cambridge University Press:  21 March 2011

V. Shur
Affiliation:
Institute of Physics and Applied Mathematics, Ural State University, 51 Lenn Ave., Ekaterinburg 620083, Russia
E. Nikolaeva
Affiliation:
Institute of Physics and Applied Mathematics, Ural State University, 51 Lenn Ave., Ekaterinburg 620083, Russia
E. Shishkin
Affiliation:
Institute of Physics and Applied Mathematics, Ural State University, 51 Lenn Ave., Ekaterinburg 620083, Russia
I. Baturin
Affiliation:
Institute of Physics and Applied Mathematics, Ural State University, 51 Lenn Ave., Ekaterinburg 620083, Russia
D. Bolten
Affiliation:
Institute fuer Werkstoffe der Elektrotechnik, RWTH Aachen, D-52056 Aachen, Germany
O. Lohse
Affiliation:
Institute fuer Werkstoffe der Elektrotechnik, RWTH Aachen, D-52056 Aachen, Germany
R. Waser
Affiliation:
Institute fuer Werkstoffe der Elektrotechnik, RWTH Aachen, D-52056 Aachen, Germany
Get access

Abstract

We have used the new approach to fatigue phenomenon for analysis of the switching current and C-V characteristic evolution during cycling in PZT thin films. It was shown that in accordance with theoretical predictions the rejuvenation stage precedes the fatigue one. We have demonstrated that fatigue behavior corresponds to the spreading of the internal bias field distribution function during ac switching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Duiker, H., Beale, P., Scott, J., Araujo, C. Paz de, Melnick, B., Cuchiaro, J., and Millan, L. Mc., J. Appl. Phys., 68, 5783 (1990).Google Scholar
2. Lee, J., Esayan, S., Safari, A., and Ramesh, R., Appl.Phys.Lett, 65, 254 (1994).Google Scholar
3. Colla, E., Taylor, D., Tagantsev, A., Colla, E., and Setter, N., Appl. phys. Lett., 73, 1361 (1998).Google Scholar
4. Stolichnov, I., Tagantsev, A., Colla, E., and Setter, N., Appl. Phys. Lett., 73, 1361, (1998).Google Scholar
5. Shur, V. Ya., Makarov, S. D., Ponomarev, N. Yu., and Kluenkov, E. V., J. Kor. Phys. Soc., 32, S1714 (1998).Google Scholar
6. Scott, J. F. and Dawber, M., Appl. Phys. Lett., 76, 3801 (2000).Google Scholar
7. Grossmann, M., Bolten, D., Lohse, O., Boettger, U., Waser, R., and Tiedke, S., Appl. Phys. Lett., 77, 1894 (2000).Google Scholar
8. Colla, E., Hong, S., Taylor, D., Tagantsev, A., Setter, N., and No, K., Appl. Phys. Lett., 72, 2763 (1998).Google Scholar
9. Gruverman, A., Auciello, O., and Tokumoto, H., Appl. Phys. Lett., 69, 3191 (1996).Google Scholar
10. Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shishkin, E. I., Baturin, I. S., Ozgul, M., and Randall, C. A., Integrated Ferroelectrics, 33, 117 (2001).Google Scholar
11. Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shiskin, E. I., Baturin, I. S., Appl. Phys. Lett. (in press).Google Scholar
12. Shur, V. Ya., Rumyantsev, E. L., Nikolaeva, E. V., Shiskin, E. I., Baturin, I. S., and Kalinina, M. V., Appl. Phys. Lett. (to be published).Google Scholar
13. Fridkin, V. M., Ferroelectrics Semiconductors, (Consultants Bureau, New York and London, 1980).Google Scholar
14. Shur, V. Ya., in Ferroelectric Thin Films: Synthesis and Basic Properties, 10, eds. Araujo, C. A. Paz de, Scott, J. F., Taylor, G. W. (Gordon and Breach, New York, 1996), p. 153.Google Scholar
15. Lambeck, P. V. and Jonker, G. H., Ferroelectrics, 22, 729 (1978).Google Scholar