Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:07:59.938Z Has data issue: false hasContentIssue false

Fe2+ Electronic Transitions in Raman and Infrared Spectra of FePSe3 and FePS3 Crystals

Published online by Cambridge University Press:  21 February 2011

M. Jouanne
Affiliation:
Laboratoire de Physique des Solides, UA 154 Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
M.L. Sanjuan
Affiliation:
Laboratoire de Physique des Solides, UA 154 Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
M.A. Kanehisa
Affiliation:
Laboratoire de Physique des Solides, UA 154 Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
M. Balkanski
Affiliation:
Laboratoire de Physique des Solides, UA 154 Université P. et M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
P. Cavalli
Affiliation:
Dip. di Fisica “A. Volta”, Università di Pavia, via Bassi 6, 27100 Pavia, Italy
G. Campagnoli
Affiliation:
Dip. di Fisica “A. Volta”, Università di Pavia, via Bassi 6, 27100 Pavia, Italy
G. Samoggia
Affiliation:
Dip. di Fisica “A. Volta”, Università di Pavia, via Bassi 6, 27100 Pavia, Italy
M. Scaglioqti
Affiliation:
Cise -Tecnologie Innovative SpA, via Reggio Emilia 39, 1-20090 Segrate (Milano), Italy
Get access

Abstract

Polarized Raman scattering and infrared absorption measurements were carried out in FePS3 and FePSe3 as a function of temperature. Features at 700-2000 cm−1 are shown to be essentially due to transitions among the trigonal-field-split 5T2g multiplet of the Fe2+ iron and their phonon sidebands. Though the unpolarized Raman spectra are similar in both compounds, polarized spectra are markedly different. We propose a tentative model to account for this.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. for a review, see, Brec, R., Solid State Ionics, 22, 3 (1986).Google Scholar
2. Méhauté, A. Le, Ouvrard, G., Brec, R., Rouxel, J., J. Mat. Res. Bull. 12, 1191 (1977).Google Scholar
3. Whangbo, M.H., Brec, R., Ouvrard, G. and Rouxel, J., Inorg. Chem. 24, 2459 (1985).CrossRefGoogle Scholar
4. Sourisseau, C., Forgerit, J.P. and Mathey, Y., J. of Solid State Chemistry 49, 134 (1983).CrossRefGoogle Scholar
5. Scagliotti, M., Jouanne, M., Balkanski, M., Ouvrard, G., Benedek, G., Phys. Rev. B 35, 7097 (1987).Google Scholar
6. Bernasconi, M., Marra, G.L., Benedek, G., Miglio, L., Jouanne, M., Julien, C., Scagliotti, M. and Balkanski, M., Phys. Rev. B to be published.Google Scholar
7. Johnstone, I.W., Lockwood, D.J. and Mischler, G., J. Phys. C: Solid State Phys. 11, 2147 (1978).CrossRefGoogle Scholar
8. Chinn, S.R. and Zeiger, H.J., Proceedings of the 17th Conf. on Magnetism and Magnetic Materials (Chicago, 1971) ed. by Graham, C.D. Jr and Rhyne, J.J., AIP Conf. Proc. N °5 (AIP, New York, 1972) p. 344.Google Scholar
9. Jouanne, M. and Julien, C., J. Appl. Phys., to be published.Google Scholar
10. Ballhausen, C. J., in Introduction to Ligand Field Theory, (McGraw-Hill, New-York, 1962).Google Scholar
11. see, for example, Griffith, J.S., in The Theory of Transition-Metal Ions (Cambridge Univ., London, 1964); S. Sugano, Y. Tanabe, and H. Kamimura, in Multilets of Transition Metal Ions in Crystals (Academic, New-York, 1970).Google Scholar
12. Boal, D.H., J.T. Hoff, Grunberg, P., Preudhomme, J. and Koningstein, J.A., J. Raman Spectr. 1, 489 (1973).Google Scholar
13. Jernberg, P., Bjarmans, S. and Wdppling, R., J. Magn. Magn. Mater. 46, 178 (1984).Google Scholar