Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T17:46:30.378Z Has data issue: false hasContentIssue false

Fe2O3:SnO2 Nanostructured System as Semiconductor Gas Sensor Material

Published online by Cambridge University Press:  01 February 2011

J. Arbiol
Affiliation:
Enginyeria i Materials Electrònics, Departament d'Electrònica, Universitat de Barcelona, C/. Martí i Franqués, 1, Barcelona, E-08028 (Spain). SCT, Universitat de Barcelona, Lluís Solé i Sabarís, 1–3, Barcelona, E-08028 (Spain). Contact e- mail: arbiol@el.ub.es URL:http://nun97.el.ub.es/~arbiol/
J. R. Morante
Affiliation:
Enginyeria i Materials Electrònics, Departament d'Electrònica, Universitat de Barcelona, C/. Martí i Franqués, 1, Barcelona, E-08028 (Spain).
M. Rumyantseva
Affiliation:
Chemistry Department. Moscow State University, Moscow, Russia
V. Kovalenko
Affiliation:
Chemistry Department. Moscow State University, Moscow, Russia
A. Gaskov
Affiliation:
Chemistry Department. Moscow State University, Moscow, Russia
Get access

Abstract

In the present work, we report a detailed study based on transmission electron microscopy of the microstructure and composition of the Fe2O3: SnO2 nanometrical binary system obtained by sol-gel. We studied a set of samples based in a pure Fe2O3 material where we added SnO 2 from 0 to 50% Sn-Fe nominal content. The structure of our composites will change from pure a-Fe2O3 to the well-known cassiterite SnO 2 structure for high Sn content. Distortions on the structural parameters will be attributed to the presence Sn4+ ions on the α-Fe2O3 structure and Fe3+ ions on the SnO2 cassiterite structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cabot, A., Arbiol, J., Morante, J.R., Weimar, U., Bârsan, N., Göpel, W., Sens. Actuators B 2000, 70, 87.Google Scholar
2. Arbiol, J., Cirera, A., Peiró, F., Cornet, A., Morante, J. R., Delgado, J.J., Calvino, J.J., Appl. Phys. Lett. 2002, 80 (2), 329.Google Scholar
3. Arbiol, J., Cerdà, J., Dezanneau, G., Cirera, A., Peiró, F., Cornet, A., Morante, J. R., J. Appl. Phys. 2002, 92(2), 853.Google Scholar
4. Jiang, J. Z., Lin, R., Lin, W., Nielsen, K., Mørup, S., Dam-Johansen, K., Clasen, R., J. Phys. D: Appl. Phys. 1997, 30, 1459.Google Scholar
5. Jiang, J. Z., Lin, R., Nielsen, K., Mørup, S., Rickerby, D. G., Clasen, R., Phys. Rev. B 1997 55 (22), 14830.Google Scholar
6. Castro, R. H. R., Hidalgo, P., Muccillo, R., Gouvêa, D., Appl. Surf. Sci. 2003, 214, 172.Google Scholar
7. Tan, O. K., Cao, W., Zhu, W., Chai, J. W., Pan, J. S., Sens. Actuators B 2003, 93, 396.Google Scholar
8. Han, K. R., Kim, C-S., Kang, K. T., Koo, H. J., II Kang, D., He, J., J. Electroceram, 2003, 10, 69.Google Scholar
9. Gopal Reddy, C. V., Cao, W., Tan, O. K., Zhu, W., Sens. Actuators B 2002, 81, 170.Google Scholar
10. Tong, M. S., Dai, G. R., Gao, D. S., Vacuum, 2000, 59, 877.Google Scholar
11. Maosong, T., Guorui, D., Dingsan, G., Appl. Surf. Sci., 2001, 171, 226.Google Scholar
12. Tan, Zhu W., Jiang, O. K., J. Z. J. Mater. Sci: Mater. Electron. 1998, 9, 275.Google Scholar
13. Berry, F. J., Bohórquez, A., Helgason, Ö, Jiang, J., McManus, J., Moore, E., Mortimer, M., Mosselmans, F., Mørup, S., J. Phys.: Condens. Matter., 2000, 12, 4043.Google Scholar
14. Rumyantseva, M.N., Safonova, O.V., Boulova, M.N., Ryabova, L.I., Gaskov, A.M., Russ. Chem. Bull. 2003, 52, 1217.Google Scholar
15. Lábár, J. L., Proc. of EUREM 12, 2000, Vol. III, I379.Google Scholar
16. Rumyantseva, M.; Kovalenko, V.; Gaskov, A.; Pagnier, T.; Machon, D.; Arbiol, J.; Morante, J.R.; to be published in Sens. Act. B. Google Scholar