Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:53:57.785Z Has data issue: false hasContentIssue false

Fermi Surfaces of Acceptor Intercalated Compounds: Evidence Frov Asf5-Graphite

Published online by Cambridge University Press:  15 February 2011

R.S. Markiewicz
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts, and Francis Bitter National Magnet Laboratory, Cambridge, Mass. 02139, USA
C. Lopatin
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts, and Francis Bitter National Magnet Laboratory, Cambridge, Mass. 02139, USA
C. Zahopoulos
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts, and Francis Bitter National Magnet Laboratory, Cambridge, Mass. 02139, USA
Get access

Abstract

We find that the carrier concentration in Stage II AsF5- graphite can be varied over a wide range, f≃.30–.46. By studying the Fermi surfaces vs. f via magnetooscillations, we find that the band parameters are essentially unchanged from pure graphite. Thus suggests that all stage two compounds should display a universal behavior as a function of f, and we adduce evidence of this from the literature. We further begin an analysis of extra oscillation frequencies. In AsF5-graphite, mixing frequencies are probably caused by Fermi-level modulation (Vinter-Overhauser effect), while a low frequency (β) is associated with a superlattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Markiewicz, R.S., Hart, H.R. Jr., Interrante, L.V., and Kasper, J.S., Solid State Communications 35, 513 (1980)Google Scholar
1a. Synthetic Metals 2, 331 (1980).Google Scholar
2. lye, Y., Takahashi, O., and Tanuma, S., Solid State Communications 33, 1071 (1980),Google Scholar
2a.and Tanuma, S., lye, Y., Takahashi, O., and Koike, Y., Synthetic Metals 2, 341 (1980).Google Scholar
3. Fischer, J.E., Moran, M.J., Milliken, J.W., and Briggs, A.J., Solid State Communications 39, 439 (1981),CrossRefGoogle Scholar
3a.and Fischer, J.E., personal communication.Google Scholar
4. Markiewicz, R.S., Sol. St. Commun., in press.Google Scholar
5. Blinowski, J., Hau, N.H., Rigaux, C., Vieren, J.P., LeToullec, R., Furdin, G., Hérold, A., and Melin, J., Journal de Physique 41, 47 (1980).Google Scholar
6. Slonczewski, J.C. and Weiss, P.R., Phys. Rev. 99, A636 (1955);Google Scholar
6a. McClure, J.W., Phys. Rev. 108, 612 (1957).Google Scholar
7. Johnson, L.G. and Dresselhaus, G., Phys. Rev. B7, 2275 (1973).Google Scholar
8. Takahashi, O., lye, Y., and Tanuma, S., Sol. St. Commun. 37, 863 (1981).Google Scholar
9. Markiewicz, R.S., Lopatin, C., Unpublished [sample provided by P. Eklund].Google Scholar
10. Batallan, F., Rosenman, I., and Simon, C., Synth. Met. 2, 353 (1980).Google Scholar
11. Woolam, J.A., Haugland, E.J., Dowell, M.B., Yavrouian, A., Lozier, A.G., and Matulka, G., Synth. Met. 2, 309 (1980).Google Scholar
12. Saylors, M.L., Boca, M.H., Smith, D.S., and Eklund, P.C., in 15th Bien. Conf. on Carbon (Phila., Pa. 1981), Extended Abstracts, p. 117.Google Scholar
13. Hennig, G.R., J. Chem. Phys. 20, 1443 (1952).Google Scholar
14. Erbil, A., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. 25, 5451 (1982).Google Scholar
15. Ubbelohde, A.R., Proc. Roy. Soc. A304, 25 (1968).Google Scholar
16. Mele, E.J. and Ritsko, J.J., Phys. Rev. Lett. 43, 68 (1979).Google Scholar
17. Bartlett, N., McQuillan, B., and Robertson, A.S., Mat. Res. Bull. 13, 1259 (1978).Google Scholar
18. Markiewicz, R.S., in Ordering in Two Dimensions, Sinha, S.K., Ed. (Elsevier, N.Y., 1980) p. 399.Google Scholar
19. Markiewicz, R.S., Kasper, J.S., and Interrance, L.V., Synthetic Metals 2, 363 (1980).Google Scholar
20. Stark, R.W. and Friedberg, C.B., J. Low Temp. Phys. 14, 1l1 (1974).Google Scholar
21. Shoenberg, D., Can. J. Phys. 46, 1915 (1968).Google Scholar
22. Vinter, B. and Overhauser, A.W., Phys. Rev. Lett. 44, 47 (1980).Google Scholar