Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T05:29:59.407Z Has data issue: false hasContentIssue false

Ferroelectric and Piezoelectric Properties of Epitaxial Pb(Yb1/2Nb1/2)O3-PbTiO3 Films

Published online by Cambridge University Press:  21 March 2011

Takeshi Yoshimura
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802-4801, U.S.A
Susan Trolier-McKinstry
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802-4801, U.S.A
Get access

Abstract

(1°x)Pb(Yb1/2Nb1/2)O3划xPbTiO3 (PYbN-PT, x=0.5) epitaxial films were grown on (001)SrRuO3/(001)LaAlO3 and (111)SrRuO3/(111)SrTiO3 substrates by pulsed laser deposition. (001)PYbN-PT epitaxial films with high phase purity and good crystalline quality were obtained for a wide range of deposition rates (60-90 nm/min) and temperatures (620-680 °C). (111)PYbN-PT films were also obtained at temperatures in the range of 600 °C to 620 °C. The ferroelectric and piezoelectric properties were investigated on both (001) and (111) PYbN-PT films. The remanent polarizations of (001)PYbN-PT and (111)PYbN-PT films were as high as 34 μC/cm2 and 26 μC/cm2, respectively. On (001)PYbN-PT films with a thickness of 900 nm, an e31 coefficient of -13 C/m2 and an aging rate of 2.5% per decade were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Muralt, P., J. Micromech. Microeng., 10, 136 (2000).10.1088/0960-1317/10/2/307Google Scholar
2. Muralt, P., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47, 903 (2000).10.1109/58.852073Google Scholar
3. Kanno, I., Fujii, S., Kamada, T., and Takayama, R., Appl. Phys. Lett., 70, 1378 (1997).10.1063/1.118583Google Scholar
4. Tuchiya, T., Itoh, T., Sakai, G., and Suga, T., J. of the Ceramic Society of Jpn., 104, 159 (1996).10.2109/jcersj.104.159Google Scholar
5. Park, S. E. and Shrout, T. R., J. Appl. Phys., 82, 1804 (1997).10.1063/1.365983Google Scholar
6. Maria, J. P., Hackenberger, W., and Trolier-McKinstry, S., J. Appl. Phys., 84, 5147 (1998).10.1063/1.368809Google Scholar
7. Maria, J. P., Ph.D. thesis, The Pennsylvania State University (1998).Google Scholar
8. Yamamoto, T. and Ohashi, S., Jpn. J. Appl. Phys., 34, 5349 (1995).10.1143/JJAP.34.5349Google Scholar
9. Lim, H., Kim, H. J., and Choo, W. K., Jpn. J. Appl. Phys., 34, 5449 (1995).10.1143/JJAP.34.5449Google Scholar
10. Bornand, V. and Trolier-McKinstry, S., Thin Solid Films, 370, 70 (2000).10.1016/S0040-6090(00)00928-7Google Scholar
11. Bornand, V. and Trolier-McKinstry, S., J. Appl. Phys., 87, 3958 (2000).10.1063/1.372441Google Scholar
12. Bornand, V., Trolier-McKinstry, S., Takemura, K., and Randall, C. A., J. Appl. Phys., 87, 3958 (2000).10.1063/1.372441Google Scholar
13. Maria, J. P., Trolier-McKinstry, S., Schlom, D. G., Hawley, M. E., and Brown, G. W., J. Appl. Phys., 83, 4373 (1998).10.1063/1.367195Google Scholar
14. Shepard, J. F. Jr, Moses, P. J., and Trolier-McKinstry, S., Sens. Actuators A 71, 133 (1998).10.1016/S0924-4247(98)00161-7Google Scholar
15. Shepard, J. F. Jr, Chu, F., Kanno, I., and Trolier-McKinstry, S., J. Appl. Phys., 85, 6711 (1999).10.1063/1.370183Google Scholar
16. Kholkin, A., Colla, E., Brooks, K., Muralt, P., Kohli, M., Maeder, T., Taylor, D., and Setter, N., Microelectron. Eng. 29, 261 (1995)10.1016/0167-9317(95)00157-3Google Scholar