Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:52:29.590Z Has data issue: false hasContentIssue false

Field-Induced ESR Spectroscopy on Rubrene Single-Crystal Field-Effect Transistors

Published online by Cambridge University Press:  31 January 2011

Hiroyuki Matsui
Affiliation:
matsui.hiroyuki@aist.go.jp, AIST, PRI, Ibaraki, Japan
Tatsuo Hasegawa
Affiliation:
t-hasegawa@aist.go.jp, AIST, PRI, Ibaraki, Japan
Get access

Abstract

We investigate the electron spin resonance (ESR) spectroscopy for the field-induced carriers in rubrene single-crystal field-effect transistors (SC-FETs), and compare the results with those on pentacene thin-film transistors (TFTs). We observe Lorentz-type ESR signal in rubrene SC-FETs whose linewidth is narrowed with increasing gate voltage and temperature. It demonstrates that the ESR linewidth is determined by motional narrowing effect as we reported on pentacene TFTs. Based on the observations, we discuss the multiple trap-and-release (MTR) processes in the two systems with and without grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dimitrakopoulos, C. D. and Mascaro, D. J. IBM J. Res. Dev. 45, 11 (2001).Google Scholar
2 Briseno, A. L. Tseng, R. J. Ling, M.-M., Falcao, E. H. L. Yang, Y. Wudl, F. and Bao, Z. Adv. Mater. 18, 2320 (2006).Google Scholar
3 Gershenson, M. E. Podzorov, V. and Morpurgo, A. F. Rev. Mod. Phys. 78, 973 (2006).Google Scholar
4 Li, Z. Q. Podzorov, V. Sai, N. Martin, M. C. Gershenson, M. E. Ventra, M. Di, and Basov, D. N. Phys. Rev. Lett. 99, 016403 (2007).Google Scholar
5 Troisi, A. and Orlandi, G. Phys. Rev. Lett. 96, 086601 (2006).Google Scholar
6 Marumoto, K. Muramatsu, Y. Nagano, Y. Iwata, T. Ukai, S. Ito, H. Kuroda, S. Shimoi, Y. and Abe, S. J. Phys. Soc. Jpn. 74, 3066 (2005).Google Scholar
7 Marumoto, K. Kuroda, S. Takenobu, T. and Iwasa, Y. Phys. Rev. Lett. 97, 256603 (2006)Google Scholar
8 Mizoguchi, K. and Kuroda, S. in Handbook of Conductive Organic Molecules and Polymers, edited by Nalwa, H. S. (Wiley, Chichester, 1997), vol. 3, pp. 251317.Google Scholar
9 Coulon, C. and Clerac, R. Chem. Rev. 104, 5655 (2004).Google Scholar
10 Matsui, H. Hasegawa, T. Tokura, Y. Hiraoka, M. and Yamada, T. Phys. Rev. Lett. 100, 126601 (2008).Google Scholar
11 Matsui, H. and Hasegawa, T. Jpn. J. Appl. Phys. 48, in press (2009).Google Scholar
12 Kubo, R. and Tomita, K. J. Phys. Soc. Jpn. 9, 888 (1954).Google Scholar
13 Horowitz, G. and Delannoy, P. J. Appl. Phys. 70, 469 (1991).Google Scholar
14 Horowitz, G. Hajloui, R. and Delannoy, P. J. Phys. III 5, 355 (1995).Google Scholar
15 Calhoun, M. F. Hsieh, C. and Podzorov, V. Phys. Rev. Lett. 98, 096402 (2007).Google Scholar
16 Podzorov, V. Pudalov, V. M. and Gershenson, M. E. Appl. Phys. Lett. 82, 1739 (2003).Google Scholar
17 Takeya, J. Yamagishi, M. Tominari, Y. Hirahara, R. Nakazawa, Y. Nishikawa, T. Kawase, T. Shimoda, T. and Ogawa, S. Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
18 Dimitrakopoulos, C. D. Brown, A. R. and Pomp, A. J. Appl. Phys. 80, 2501 (1996).Google Scholar
19 Zeng, X. Zhang, D. Duan, L. Wang, L. Dong, G. and Qiu, Y. Appl. Surf. Sci. 253, 6047 (2007).Google Scholar