Published online by Cambridge University Press: 21 February 2011
Hydrogenated amorphous silicon-carbon alloys (a-SiC:H) with 1.9–2.0 eV bandgaps have been grown by glow-discharge using methane as the source of carbon with high hydrogen dilution (CH4+H2) at various substrate temperatures. A thickness dependence of the properties of un-doped films is observed. The photo-electronic properties have been much improved in these undoped alloys compared to those of CH4 based films without H-dilution, however the CH4+H2 based boron doped a-SiC:H films show little improvement. Simple p-i-n single junction solar cells using improved wide-gap a-SiC:H Mayers, based on the CH4+H2 recipe and the novel carbon feedstock trisilylmethane (TSM), show high open circuit voltages and high fill factors. The cell stability under illumination has been tested. There is no correlation in degradation rates between the a-SiC:H cell efficiency and the photoconductivity of the corresponding i-layer films.