Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:17:32.505Z Has data issue: false hasContentIssue false

Finite-Temperature Molecular Dynamics Study for Atomic Structures of Grain Boundary in Transition Metals Fe and Ni

Published online by Cambridge University Press:  21 February 2011

Wang Chongyu
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
Duan Wenhui
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
Song Quanming
Affiliation:
Central Iron and Steel Research Institute, Beijing 100081, China
Get access

Abstract

Based on Gauss’ principle of least constraint and Nosé-Hoover thermostat formulation, the numerical algorithms for molecular dynamics simulation are developed to investigate the properties of grain boundary in transition metals Fe and Ni at finite temperature. By the appropriate choice of heat bath parameter, a constant temperature version can be realized. A series of parameters are introduced to describe quantitatively the crystallographic characteristic and the distortion of structure unit. The results indicate the applicability of the calculation mode developed by us and reveal the feature of the atomic structure of grain boundary at finite temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Eberhart, M. E. and Vvedensky, D. D., Phys. Rev. Lett. 58, 61 (1987).Google Scholar
2 Painter, G. S. and Averill, F. W., Phys. Rev. Lett. 58, 234 (1987).CrossRefGoogle Scholar
3 Eberhart, M. E. and Vvedensky, D. D., Mat. Sci. Forum 46, 169 (1989).CrossRefGoogle Scholar
4 Vasudevan, A. K. and Petrovic, J. D., Mat. Sci. Eng. A 155 1 (1992).CrossRefGoogle Scholar
5 Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
6 Hansen, J.-P., Computer Simulation in Material Science, edited by Meyer, M. and Pontikis, V. (Kluwer Academic Publishers, Netherlands, 1991), p. 3.Google Scholar
7 Hoover, W. G., Molecular Dynamics, (Springer-Verlag, Berlin, 1986).Google Scholar
8 Nosé, S., Mol. Phys. 52, 255 (1984).CrossRefGoogle Scholar
9 Nosé, S., J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
10 Andersen, H.C., J. Chem. Phys. 72, 2384 (1980).CrossRefGoogle Scholar
11 Parrinello, M., Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
12 Evans, D. J. and Morriss, G. P., Phys. Lett. 98A, 433 (1983).CrossRefGoogle Scholar
13 Nosé, S., Prog. Theor. Phys. Suppl. 103, 1 (1991).CrossRefGoogle Scholar
14 Ciccotti, G. and Ryckaert, J. P., Computer Phys. Rep. 4, 347 (1986).CrossRefGoogle Scholar
15 Hoover, W. G., Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar