Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T22:11:00.492Z Has data issue: false hasContentIssue false

First-principles Calculations on the Zn1-xMgxO Window Layer Material for CIS Thin Film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Tsuyoshi Maeda
Affiliation:
t05d004@students.chem.ryukoku.ac.jp, Ryukoku University, Materials chemistry, 1-5 Yokotani,Seta Oe-cho, Otsu, 520-2194, Japan, +81-77-543-7468, +81-77-543-7483
Akio Shigemi
Affiliation:
shigemi@project1.hrc.ryukoku.ac.jp, Ryukoku University, Department of Materials chemistry, Seta, Otsu, 520-2194, Japan
Takahiro Wada
Affiliation:
twada@rins.ryukoku.ac.jp, Ryukoku University, Department of Materials chemistry, Seta, Otsu, 520-2194, Japan
Get access

Abstract

We have theoretically evaluated the phase stability and electronic structure of a Zn1-xMgxO solid solution. The enthalpies of formation for both the wurtzite and rocksalt phases of Zn1-xMgxO were calculated using a plane-wave pseudopotential method within the density functional formalism. For 0 < x < 0.5, the calculated enthalpies of formation (&[Delta]H) for the wurtzite phases were lower than those for the rocksalt phases. On the other hand, for x > 0.75, the &[Delta]H values for the wurtzite phase were larger than those for the rocksalt phases. This indicates that the wurtzite phase is more stable for a Zn1-xMgxO solid solution with 0 < x < 0.5, while the rocksalt phase is more stable for a solid solution with x > 0.75. The band gaps of a wurtzite Zn1-xMgxO solid solution increase with increasing Mg content. MgO substitution on Zn1-xMgxO largely affects the conduction band leaving the valence band nearly unchanged. The conduction band minimum (CBM) shifted to higher energy with increasing Mg content. These theoretical results qualitatively agree with the experimental results for Zn1-xMgxO thin films fabricated by RF magnetron co-sputtering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, Miguel A., Romero, Manuel J. and Noufi, R., Thin solid Films 511-512, 51 (2006).Google Scholar
2. Kushiya, K., Tachiyuki, M., Kase, T., Sugiyama, I., Nagoya, Y., Okumura, D., Sato, M., Yamase, O. and Takeshita, H., Sol. Energy Mater.Sol. Cells 49, 277 (1997).Google Scholar
3. Ohtake, Y., Chaisitsak, S., Yamada, A. and Konagai, M., Jpn. J. Appl. phys., 37, 3220 (1998).Google Scholar
4. Matsubara, K., Yamada, A., Ishizuka, S., Sakurai, K., Tampo, H., Yonemura, M., Nakamura, S., Nakanishi, H. and Niki, S., Proceedings of 2006 IEEE 4th WCPEC, p571.Google Scholar
5. Minemoto, T., Negami, T., Nishiwaki, S., Takakura, H. and Hamakawa, Y., Thin Solid Films 372, 173 (2000).Google Scholar
6. Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y., J. Appl. Phys. 89, 8327 (2001).Google Scholar
7. Perdew, J. P., Chevary, J. A., Jackson, K. A., Pederson, M. R., Singh, D. J., Vosko, S. H., Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
8. Milman, V., Winkler, B., White, J. A., Pickard, C. J., Payne, M. C., Akhmatskaya, E. V. and Nobes, R. H., Int. J. Quantum Chem. 77, 895 (2000).Google Scholar
9. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
10. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 1588 (1976).Google Scholar
11. Kresse, G., Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
12. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
13. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes (Cambridge University Press, Cambridge, 1992) 2nd ed., p.418.Google Scholar
14. Kubaschewski, O., Alcock, C. B. and Spencer, P. J.: Materials Thermochemistry (Pergamon Press, Oxford, 1993) 6th ed., p. 167.Google Scholar