Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:38:44.443Z Has data issue: false hasContentIssue false

Forces between Dislocations due to Dislocation Core Fields

Published online by Cambridge University Press:  21 March 2011

Charles H. Henager Jr.
Affiliation:
Pacific Northwest National Laboratory Richland, WA 99335-0999
Richard G. Hoagland
Affiliation:
Pacific Northwest National Laboratory Richland, WA 99335-0999
Get access

Abstract

Atomistic dislocation models were used to determine the properties of dislocation core fields in Al using an EAM potential. Equilibrium atom configurations were compared with initial configurations displaced according to the Volterra field to determine core displacement fields for edge, screw, and mixed (60° and 30°) geometries. The core field was approximated by a line force defect field lying parallel to the dislocation line direction. Best-fit parameters for the core fields were obtained in terms of the anisotropic elastic solution for a line force defect, from which the line force strengths and the origin of the line forces were determined. The line force stress fields were then used to compute the forces between dislocations for several dislocation configurations. The Volterra field dominates beyond 50b but core field forces modify the equilibrium angle of edge dislocation dipoles and determine the force between otherwise noninteracting edge and screw dislocations at distances out to 50b compared to the Volterra-only forces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fivel, M. C. and Canova, G. R., Modell. Simul. Mater. Sci. Eng., 1999, 7 753.Google Scholar
2. Gehlen, P. C., Hirth, J. P., Hoagland, R. G., and Kanninen, M. F., J. Appl. Phys., 1972, 43 3921.Google Scholar
3. Crussard, C. and Aubertin, F., Rev. Met., 1949, 46 354.Google Scholar
4. Hoagland, R. G., Hirth, J. P., and Gehlen, P. C., Philos. Mag., 1976, 34 413.Google Scholar
5. Adams, B. L., Hirth, J. P., Gehlen, P. C., and Hoagland, R. G., J. Phys. F, 1977, 7 2021.Google Scholar
6. Gehlen, P. C., Hoagland, R. G., Kanninen, M. F., and Hirth, J. P., Scr. Met., 1972, 6 445.Google Scholar
7. Pasianot, R., Savino, E. J., Xie, Z. Y., and Farkas, D., Mater. Res. Soc. Symp. Proc., 1993, 291 85.Google Scholar
8. Woo, C. H. and Puls, M. P., Philos. Mag., 1977, 35 727.Google Scholar
9. Hoagland, R. G., Hirth, J. P., and Gehlen, P. C., Philos. Mag., 1976, 34 413.Google Scholar
10. Sinclair, J. E., Gehlen, P. C., Hoagland, R. G., and Hirth, J. P., J. Appl. Phys., 1978, 49 3890.Google Scholar
11. Mishin, Y., Farkas, D., Mehl, M. J., and Papaconstantopoulos, D. A., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59 3393.Google Scholar
12. Puls, M. P., Dislocation Modell. Phys. Syst., Proc. Int. Conf. (1981),, 1980,249.Google Scholar
13. Kuan, H. and Hirth, J. P., Mater. Sci. Eng., 1976, 22 113.Google Scholar
14. Hoagland, R. G., J. Mater. Res., 1994, 9 1805.Google Scholar
15. Kurtz, R. J., Hoagland, R. G., and Hirth, J. P., Phil. Mag. A, 1999, 79 665.Google Scholar
16. Hirth, J. P. and Lothe, J., J. Appl. Phys., 1973, 44 1029.Google Scholar
17. J. H. Kuhlmann-Wilsdorf, v. d. M. D., Wilsdorf, H. G. F., Phil. Mag., 1952, 43 632.Google Scholar