Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T06:59:17.375Z Has data issue: false hasContentIssue false

Formation of Silicon-on-Insulator Films from Powders

Published online by Cambridge University Press:  15 February 2011

Kamesh V. Gadepally
Affiliation:
Fairchild Research Center, National Semiconductor Corporation, Santa Clara, CA 95052-8090
Roger M. Hawk
Affiliation:
University of Arkansas at Little Rock, Department of Electronics and Instrumentation, Little Rock, AR 72204
William D. Brown
Affiliation:
University of Arkansas, Department of Electrical Engineering, Fayetteville, AR 72701
Get access

Abstract

Silicon powders have been successfully deposited by a corona discharge assisted electrostatic process on insulating, semiconducting, and conducting substrates. Subsequently, the deposits were heat treated and films have been formed. We present data pertatining to silicon films on insulators. The insulating surfaces used were sapphire, SiO2 on Si, and Si3N4 on Si. The electrical, chemical, and physical characteristics of these films are presented along with the time and temperature effects on the film formation. The impact of the above method with emphasis to the microelectronics industry will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maby, E.W., Geis, M W., LeCoz, Y.L., Silvesmith, D.J., Mountain, R.W., and Antoniadis, D.A., IEEE Electron Device Letters, EDL–2(10)241 (1981).CrossRefGoogle Scholar
2. Jastrzebski, L., J. Crystal Growth 63, 493. (1983).CrossRefGoogle Scholar
3. Classon, W. A. P. and Bloem, J., J. Electrochem. Soc., 128, 6 1353 (1981).CrossRefGoogle Scholar
4. Lin, T. L. and Wang, K.L., Appl. Phys. Lett., 49, 17 1104 (1986).CrossRefGoogle Scholar
5. Cellar, G.K., Robinson, McD. and Lischner, D.J., Appl. Phys. Lett., 42, 1 99 (1983).CrossRefGoogle Scholar
6. Lee, El. H., Appl. Phys. Letter., 48, 2 180 (1986).CrossRefGoogle Scholar
7. Geis, M.W., Smith, H.I., Tsuar, B.Y., Fan, J.C., Maby, E.W. and Antoniadis, D.A., Appl. Phys. Lett., 40, 2 158 (1982).CrossRefGoogle Scholar
8. Larn, H.W., Pinizzotto, R.F., and Tasch, A.F. Jr., J. Electrochem. Soc., 128, 9 1981 (1981).Google Scholar
9. Biegelsen, D. K., Johnson, N.M., Bartelink, D.J., and Moyer, M.D., Appl. Phys. Lett., 38, 3 150 (1981).CrossRefGoogle Scholar
10. Suryanarayanan, R. and Akani, M., Appl. Phys. Lett., 51, 4 259 (1987).CrossRefGoogle Scholar
11. Vu, D.P., Haond, M., Bensahel, D., and Dupuy, M., J. Appl. Phys., 54, 1 437 (1983).CrossRefGoogle Scholar
12. Akani, M., Suryanarayanan, R., and Brun, G., J. Appl. Phys., 60, 1 457 (1986).CrossRefGoogle Scholar
13. Yamada, I., Takaoka, H., Usui, H., and Takagi, T.., J. Vac. Sci. Technol., A4, 3 722 (1986).CrossRefGoogle Scholar
14. Hughes, J.F., J. Electrostatics, 23, 3 (1989).CrossRefGoogle Scholar
15. Miller, E. (ed.), Users Gude to Powder Coating. 2nd ed., Soc. of Manufacturing Engr., Dearborn, Michigan (1987).Google Scholar
16. Gadepally, K.V., Tennal, K.B., Hawk, R.M., and Brown, W.D., Accepted in Clusters and Cluster Assembled Materials (Mater. Res. Soc. Proc. Pittsburgh, PA 1990).Google Scholar
17. Gadepally, K.V., PhD thesis, University of Arkansas, 1991.Google Scholar
18. Miller, A. and Manasevit, K.M., J. Vac. Sci. Technol., 3, 21 68 (1965).Google Scholar