Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T01:11:17.694Z Has data issue: false hasContentIssue false

Fracture and Fatigue of Niobium Silicide Alloys

Published online by Cambridge University Press:  01 February 2011

David M. Herman
Affiliation:
dxh122@case.edu, Case Western Reserve University, Department of Materials Science and Engineering, Cleveland, Ohio, United States
Bernard P Bewlay
Affiliation:
Bewlay@crd.ge.com, General Electric Global Research, Schenectady, New York, United States
Laurent Cretegny
Affiliation:
cretegny@crd.ge.com, General Electric Global Research, Schenectady, New York, United States
Richard DiDomizio
Affiliation:
didomizr@crd.ge.com, General Electric Global Research, Schenectady, New York, United States
John Lewandowski
Affiliation:
jjl3@case.edu, Case Western Reserve University, Department of Materials Science and Engineering, Cleveland, Ohio, United States
Get access

Abstract

The fracture and fatigue behavior of refractory metal silicide alloys/composites is significantly affected by the mechanical behavior of the refractory metal phase. This paper reviews some of the balance of properties obtained in the alloys/composites based on the Nb-Si system. Since some of the alloy/composite properties are dominated by the behavior of the refractory metal phase, the paper begins with a review of data on monolithic Nb and its alloys. This is followed by presentation of results obtained on Nb-Si alloys/composites and a comparison to behavior of some other high temperature systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bewlay, B.P., Jackson, M.R., Zhao, J.C., Subramanian, P.R., Mendiratta, M.G., and Lewandowksi, J.J.. MRS Bulletin. 28, 646(2003).Google Scholar
[2] Bewlay, B.P., Jackson, M.R., Zhao, J.C., and Subramanian, P.R.. Metall. Mater. Trans. A 34A, 2043(2003).Google Scholar
[3] Bewlay, B. P., Lewandowski, J.J., and Jackson, M. R.. JOM, 49, 44 (1997).Google Scholar
[4] Mendiratta, M.G., Lewandowksi, J. J., and Dimiduk, D.M.. Metall. Trans. A. 22A, 1573(1991).Google Scholar
[5] Mendiratta, M.G., Lewandowski, J.J., and Dimiduk, D.M. Metall. Trans. A, 24A, 501(1993).Google Scholar
[6] J'ehanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., Jackson, M., Metall. Mater. Trans A. 36A, 515(2005).Google Scholar
[7] Kimura, Y., Yamaoka, H., Sekido, N., and Mishima, Y.. Metall. Mater. Trans. A, 36A, 483(2005).Google Scholar
[8] Zinsser, W. A. and Lewandowski, J. J., Metall. Mater. Trans. A. 29A, 1749 (1998).Google Scholar
[9] Rigney, J. D. and Lewandowski, J. J., Metall. Trans. A. 27A, 3292 (1996).Google Scholar
[10] Bewlay, B. P., Yang, Y., Casey, R. L., Jackson, M. R., Chang, Y. A. in Advanced Intermetallic-Based Alloys, edited by Jörg Wiezorek, Chong Long Fu, Masao Takeyama, David Morris, and Helmut Clemens (Mater. Res. Soc. Symp. Proc. 980, 2006) pp. 0980-II05–34.Google Scholar
[11] Padhi, D. and Lewandowski, J. J., Metall. Mater. Trans. A. 34A, 1 (2003).Google Scholar
[12] Samant, A. and Lewandowski, J. J., Metall. Trans. A. 28A, 389 (1997).Google Scholar
[13] Adams, M. A., Adams, A. C., and Smallman, R.E., Acta Metall., 8, 328 (1960).Google Scholar
[14] Lewandowski, J. J., Padhi, D., and Solv'yev, S., Flow, Fracture, and Fatigue of Nb and Nb Silicide Intermetallic Compossites. in Structural Intermetallics 2001, TMS (The Minerals, Metals and Materials Society) pp. 371.Google Scholar
[15] Mendiratta, M.G., Goetz, R., Dimiduk, D.M., and Lewandowski, J.J.. Metall. Trans. A. 26A, 1767 (1995).Google Scholar
[16] Kajuch, J., Short, J.W., and Lewandowski, J.J., Acta Metall. Mater. 43, 1955 (1995).Google Scholar
[17] Subramanian, P.R., Mendiratta, M.G., Dimiduk, D.M., and Stucke, M.A., Mater. Sci. Eng. A239–240, 1 (1997).Google Scholar
[18] Bewlay, B. P., Jackson, M. R., and Lipsitt, H. A., Metall. Trans. A. 27A, 3801(1996).Google Scholar
[19] Jones, M.R., and Jackson, K.D., Refractory Metals: Extraction, Processing, and Applications, (Liddell, KC, Sadoway, DR, and Bautista, RG, eds), TMS, Warrendale, PA, pp.335(1990).Google Scholar
[20] Samant, A.V. and Lewandowski, J.J.. Metall. Trans. A 28, 2297 (1997).Google Scholar
[21] Nekkanti, R. N. and Dimiduk, D. M., Ductile-phase toughening in niobium-niobium. Mat. Res. Sac. Symp. Proc. Vol.194, pp.175 (1990).Google Scholar
[22] Zinsser, W. A. and Lewandowski, J. J., Scripta Metall Mater. 38, 1775 (1998)Google Scholar
[23] Lewandowski, J. J., in Fatigue ′99, (Wu, XR and Zhang, ZG, eds.), Volume III, EAMS, p.147 (1999).Google Scholar
[24] Rigney, J. D., et al. Unpublished Rsearch, (1998).Google Scholar
[25] Rao, KTV and Ritchie, R.O., Mater. Sci. Eng. A153, 479 (1992).Google Scholar
[26] Rao, KTV, Soboyejo, W.O., and Ritchie, R.O., Metall. Trans. A, 23A, 2249 (1992).Google Scholar
[27] Soboyejo, W. O., and Sastry, SML Mater. Sci. Eng. A171, 95 (1993).Google Scholar
[28] Solv'yev, S. and Lewandowski, J. J., Unpublished Research, Case Western Reserve University, Cleveland, OH (2000).Google Scholar
[29] Ritchie, R.O., Inter J. Fracture. 100, 55(1999)Google Scholar
[30] Choe, H., et al. in Fatigue and Fracture of High Temp. Matl's, (Liaw, PK, eds), TMS Warrendale, PA, p. 17 (2000).Google Scholar
[31] Ma, C.L., et al, Mater. Sci. Eng. A384, 377 (2004).Google Scholar
[32] Herman, D.M., M.S. Thesis, CWRU (2008).Google Scholar
[33] Ritchie, R.O., Dauskardt, R. H., and Rao, K.T., Mater. Sci. 30, 277 (1994).Google Scholar
[34] Kruzic, J.J., Schneiber, J.H., and Ritchie, R. O., Scripta Mater. 50, 459(2004).Google Scholar