Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:10:37.087Z Has data issue: false hasContentIssue false

Fuel Cell Membranes Based on Polymer-Modified Silica Colloidal Crystals and Glasses: Proton Conductivity and Fuel Cell Performance

Published online by Cambridge University Press:  02 May 2013

Amir Khabibullin
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Ilya Zharov
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Get access

Abstract

We describe a hybrid organic-inorganic fuel cell membrane material based on silica colloidal crystal and using EEMA/SPM co-polymers. We demonstrate that there is an S-shaped dependence of proton conductivity on the amount of sulfonyl groups in the copolymer for the copolymer-modified membranes and that there is no significant increase in proton conductivity with increasing amount of sulfonated monomer content above 60%. The studies of fuel cell potential dependence on the degree of sulfonation show that the presence of non-ionic moieties improves the performance of fuel cell, likely due to the reduction of methanol cross-over through the membrane. The fuel cells using the polymer-modified silica colloidal membranes perform better than Nafion 117.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tripathi, B., Shahi, K., Prog. Polym. Sci. 36, 945 (2011).CrossRefGoogle Scholar
Winter, M., Brodd, R. J., Chem. Rev. 104, 4245 (2004).CrossRefGoogle Scholar
Gary, F. M., Polymer Electrolytes; Royal Society of Chemistry:Cambridge, 1997.Google Scholar
Dresselhaus, M., Crabtree, G., Buchanan, M., Basic Research Needs for the Hydrogen Economy. A Report on the Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use; Argonne National Laboratory, U.S. Department of Energy: Chicago, 2004; pp 1178.CrossRefGoogle Scholar
Mauritz, K. A., Moore, R. B., Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
Valle, K., Belleville, P., Pereira, F., Sanchez, C., Nat. Mater. 5, 107 (2006).CrossRefGoogle Scholar
Bhattacharyya, A. J., Maier, J., Adv. Mater. 16, 811 (2004).CrossRefGoogle Scholar
Sel, O., Soulès, A., Améduri, B., Boutevin, B., Laberty-Robert, C., Gebel, G., Sanchez, C., Adv. Funct. Mater. 20, 1090 (2010).CrossRefGoogle Scholar
Smith, J. J., Zharov, I., Chem. Mater. 21, 2013 (2009).CrossRefGoogle Scholar
Hill, D. J. T., O’Donnell, J. H., Pomery, P. J., Whittaker, M. R., Polym. Gel Network 3 85 (1995).CrossRefGoogle Scholar
Lukas, J., Smetana, K., Petrovicky, P., Paleckova, V., Vacik, J., Dvorankova, B., Broz, L., Pospisilova, D., Holikova, Z., Bartunkova, J., J. Mat. Sci. 12, 639 (2001).Google Scholar
Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
Bohaty, A. K., Smith, J. J., Zharov, I., Langmuir 25, 3096 (2009).CrossRefGoogle Scholar