No CrossRef data available.
Published online by Cambridge University Press: 29 May 2013
Herein, we investigated the noncovalent interactions derived from functionalized carbon nanotube matrices grafting metallic alloy PtRu nanoparticle-decorated Vulcan carbon (fMWCNTs-g-PtRu/C) toward the enhancement of alcohol oxidation reactions. The fMWCNTs noncovalently grafted PtRu/C was successfully synthesized and demonstrated significant enhancement of the electro-catalytic activity and stability toward alcohol oxidation reactions as revealed by electrochemical characterizations. The presented results indicate that the grafting matrix specifically enhances ethanol oxidation reaction kinetics much more than methanol and propanol oxidation reactions. Since the same loading of PtRu/C was used for all tests, the differentiation between these reactants revealed the different strength of noncovalent interactions between the functional matrix and corresponding reactants. This result reveals a new strategy for using fMWCNTs matrix as potential catalyst supports due to its facile fabrication and functionalization, cost effectiveness and environmental friendliness, factors in which all of them are necessary for the practical application of direct alcohol fuel cells in near future.