Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T00:34:18.383Z Has data issue: false hasContentIssue false

GaN Growth on Si Using ZnO Buffer Layer

Published online by Cambridge University Press:  01 February 2011

K.C. Kim
Affiliation:
Department of Chemical Engineering, P.O. Box 116005, Gainesville, FL 32611-6005 D.Craciun National Institute for Laser, Plasma and Radiation, Romania
S.W. Kang
Affiliation:
Department of Chemical Engineering, P.O. Box 116005, Gainesville, FL 32611-6005 D.Craciun National Institute for Laser, Plasma and Radiation, Romania
O. Kryliouk
Affiliation:
Department of Chemical Engineering, P.O. Box 116005, Gainesville, FL 32611-6005 D.Craciun National Institute for Laser, Plasma and Radiation, Romania
T.J. Anderson
Affiliation:
Department of Chemical Engineering, P.O. Box 116005, Gainesville, FL 32611-6005 D.Craciun National Institute for Laser, Plasma and Radiation, Romania
D. Craciun
Affiliation:
National Institute for Laser, Plasma and Radiation, Romania
V. Craciun
Affiliation:
Materials Sciences and Engineering, P.O. Box 116400, Gainesville, FL 32611-6400
R.K. Singh
Affiliation:
Materials Sciences and Engineering, P.O. Box 116400, Gainesville, FL 32611-6400
Get access

Abstract

ZnO films were deposited by Pulsed Laser Deposition (PLD) onto silicon substrates to serve as a buffer layer for GaN films grown by MOCVD. A ZnO buffer layer was found to improve the quality of GaN grown on Si. The thermal stability of ZnO as a buffer layer was also examined. It was determined that exposure of ZnO/Si to NH3 at high temperature (> 600°C) results in the decomposition of ZnO and subsequent poor nucleation of GaN. The ZnO layer thickness on GaN quality was found to be important.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., J. Appl. Phys. Vol. 86, 1, 178 (1999)Google Scholar
2. Pearton, S.J., Ren, F., Zhang, A.P. and Lee, K.P., Mat. Sci. & Eng. R. Vol. 30, 55212 (2000)Google Scholar
3. Kim, M.H., Bang, Y.C, Park, A.M., Choi, C.J, Seong, T.Y. and Park, S.J., Appl. Phys. Lett. Vol. 78, 19, 28582860 (2001)Google Scholar
4. Krost, A. and Dadgar, A., Phys. Stat. Sol. (a) 194, No.2, 361375 (2002)Google Scholar
5. Wang, D., Hiroyama, Y., Tamura, M. and Ichikawa, M., Appl. Phys. Lett. Vol.77, 12, 18461848 (2000)Google Scholar
6. Zamir, S., Meyler, B., Zolotoyabko, E., Salzman, J., J. Crystal Growth 218, 181190 (2000)Google Scholar
7. Ueda, T., Huang, T.F., Spruytte, S., Lee, H., Yuri, M., Itoh, K., Baba, T. and Harris, J.S. Jr , J. Crystal Growth 187, 340346 (1998)Google Scholar
8. Gu, S., Zhang, R., Sun, J., Zhang, L. and Kuech, T.F., Appl. Phys. Lett. Vol. 76, 34543456 (2000)Google Scholar
9. Molnar, R.J., Gotz, W., Romano, L.T., Johnson, N.M., J. Crystal Growth 178, 147156 (1997)Google Scholar
10. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. Vol. 61, 26882690 (1992)Google Scholar
11. Strittmatter, A., Krost, A., Turck, V., Strabburg, M., Blasing, J., Hempel, T., Christen, J., Neubauer, B., Gerthsen, D., Christmann, T., Meyer, B.K., Materials Science and Engineering B59, 2932 (1999)Google Scholar
12. Lee, J.W., Parkand, S.W. Yoo, J.B., Phys. Stat. Sol(a) 176, 583 (1999)Google Scholar
13. Molnar, R.J., Maki, P., Aggarwal, R., Liau, Z.L., Brown, E.R., Melngailis, I., Gotz, W., Romano, L.T., Johnson, N.M., Mat. Res. Soc. Symp. Proc. 423, 221 (1996)Google Scholar
14. Dehoff, Robert T., “Thermodynamics in Materials Science”, (McGraw Hill, 1993) pp. 326327 Google Scholar