Published online by Cambridge University Press: 06 March 2012
This study presents a materials development of composite electrode materials of graphene oxide (GO) and transition metal oxide nanostructures. Reduced graphene oxide (rGO) films were obtained by electrophoretic deposition (EPD) onto a conductive substrate. Co3O4 and MnO2 nanostructures were synthesized to form composites with rGO. Graphene materials, with high electrical conductivity, high specific surface area and excellent mechanical properties are ideal for a host of electrical applications. The properties of metal oxides like Co3O4 and MnO2 has allowed for increased energy density, while rGO increases charge storage and transport in the electrical double layer at the electrode/electrolyte interface. Graphene and metal oxide composites offer increased energy density and capacitance compared with traditional double layer supercapacitors.