Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:19:04.993Z Has data issue: false hasContentIssue false

Growth and Characterization of ZnO Nano-Rods on Si Substrate by Pulsed Laser Ablation

Published online by Cambridge University Press:  21 March 2011

Vinay Gupta
Affiliation:
Department of Physics, PO Box 23343Univ. of Puerto Rico, San Juan, PR
P. Bhattacharya
Affiliation:
Department of Physics, PO Box 23343Univ. of Puerto Rico, San Juan, PR
Yu. I. Yuzyuk
Affiliation:
Department of Physics, PO Box 23343Univ. of Puerto Rico, San Juan, PR
R.S. Katiyar
Affiliation:
Department of Physics, PO Box 23343Univ. of Puerto Rico, San Juan, PR
Get access

Abstract

Zinc oxide (ZnO) nanorods were fabricated directly on silicon substrate with diameters in the range of 70-350 nm and up to 15 νm long using pulsed-laser deposition at a relatively low processing temperature (450°C) without any catalytic template. The influences of substrate temperatures and the oxygen pressures on the formation of ZnO nanorods were investigated. The Raman scattering studies and scanning electron microscopy results indicated that the ZnO nanorods were well aligned along c-axis and isolated from each other. The additional Raman modes at ∼ 477 cm−1 and 574 cm−1 were observed in the c-axis oriented ZnO nanorods which attributed to the activation of the upper and lower surface phonon modes respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S. and Yatsui, T., IEEE J. Sel. Top. Quant. Elec. 8, 839 (2002).Google Scholar
2 Roy, V. A. L., Djurisic, A. B., Chan, W. K., Gao, J., Lui, H. F. and Surya, C., Appl. Phys. Lett. 83, 141 (2003).Google Scholar
3 Roest, A. L., Kelly, J.J., Vanmaekelbergh, D. and Meulenkamp, E. A., Phys. Rev. Lett. 89, 036801 (2002).Google Scholar
4 Johnson, J. C., Yan, H., Schaller, R. D., Haber, L. H., Saykally, R. J. and Yang, P., J. Phys. Chem. B 105, 11387 (2001).Google Scholar
5 Huang, M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science 292, 1897 (2001).Google Scholar
6 Heer, W. A. de, Chatelain, A. and Ugarte, D., Science 270, 1179 (1995).Google Scholar
7 Cao, AH., Xu, J. Y., Seeling, E. W. and Cang, R. P. H., Appl. Phys. Lett. 76, 2997 (2000)Google Scholar
8 Park, W. I., Jun, Y. H., Jung, S. W. and Yi, G. C., Appl. Phys. Lett. 82, 964 (2003).Google Scholar
9 Ip, K., Frazier, R. M., Heo, Y. W., Norton, D. P., Abernathy, C. R., Pearton, S. J., Kelly, J., Rairigh, R., Hebard, A. F., Zavada, J. M. and Wilson, R. G., J. Vac. Sci. Tech. B 21, 1476 (2003).Google Scholar
10 Yan, M., Zhang, H. T., Widjaja, E. J. and Chang, R. P. H., J. Appl. Phys. 94, 5240 (2003).Google Scholar
11 Min, B., Lee, J. S., Hwang, J. W., Keem, K. H., Kang, M. I., Cho, K., Sung, M. Y., Kim, S., Lee, M. S., Park, S. O. and Moon, J. T., J. Crystal Growth 252, 565 (2003).Google Scholar
12 Ng, H. T., Chen, B., Li, J., Han, J., Meyyapah, M., Wu, J., Li, S. X. and Halterang, E. E., Apl. Phys. Lett. 82, 2023 (2003).Google Scholar
13 Calleja, J. M. and Cardona, M., Phys. Rev. B 16, 3753 (1977).Google Scholar
14 Arguello, C. A., Rousseau, D.L. and Porto, S.P., Phys. Rev. 181, 1351 (1969).Google Scholar
15 Ruppin, R., J. Phys. C 8, 1969 (1975).Google Scholar
16 Jusserand, B., Cardona, M., in: Carodana, M., Güntherodt, G. (Eds.), Light scattering in solids V, Topics in Applied Physics, 66, Springer-verlag, Berlin, 1989, p.49.Google Scholar
17 Prieur, J.Y. and Ushioda, S., Phys. Reb. Lett. 34, 1012 (1975).Google Scholar