Published online by Cambridge University Press: 21 March 2011
We report on the performance of a planetary multi-wafer MOCVD reactor which handles 5 six inch wafers simultaneously. The reactor is combined with a liquid delivery system which mixes the liquid precursors from three different sources: 0.35 molar solutions of Ba(thd)2 and Sr(thd)2 and a 0.4 molar solution of Ti(O-i-Pr)2(thd)2. The microstructure and the film stress were investigated by X-ray diffraction and the composition of the films was determined by X-ray fluorescence analysis. As a direct consequence of the reactor design we obtain a high uniformity of the films over 6 inch wafers, as well as high efficiencies for the precursor incorporation. Film growth is discussed within a wide parameter field and the finally achieved electrical properties, e.g., permittivity, loss tangent, leakage current, are discussed in relation to the microstructural properties.