Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T05:46:33.489Z Has data issue: false hasContentIssue false

Growth of Ceria-Zirconia Electrolyte Nanostructures with High Interface Density by Using Sol-gel/GLAD Combination

Published online by Cambridge University Press:  01 February 2011

Laxmikant Saraf
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352.
D. W. Matson
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352.
J. S. Young
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352.
C. M. Wang
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352.
S. Thevuthasan
Affiliation:
Pacific Northwest National Laboratory, Richland WA 99352.
Get access

Abstract

We report a process for the successful incorporation of ceria in to yttria-stabilized zirconia (YSZ) columnar nanostructures grown by glancing angle deposition (GLAD) technique, resulting in high interface density columnar nanostructures. The incorporation of ceria into YSZ columns is confirmed by scanning electron microscopy (SEM) in a cross sectional geometry with in-situ analysis of elemental x-ray mapping technique and energy dispersive x-ray analysis (EDX). Controlled engineering of such nanostructures is potentially important in the future development of high efficiency solid oxide fuel cell electrolytes. The challenges and advantages of this process are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S. and Thomas, I. L., Nature, 414, 332 (2001).Google Scholar
2. Steele, B. C. H. and Heinzel, A., Nature, 414, 345 (2001).Google Scholar
3. Park, S., Vohs, J. M. and Gorte, R. J., Nature, 404, 265 (2000).Google Scholar
4. Dick, B., Brett, M. J., Smy, T., Belov, M. and Freeman, M. R., J Vac Sci & Tech B, 19, 1813 (2001).Google Scholar
5. Karabacak, T., Singh, J. P., Zhao, Y.-P., Wang, G. C. and Lu, T.-M., Phy Rev B, 68, 125408 (2003)Google Scholar
6. Armelao, L., Bottaro, G., Bigliani, L. and Tondello, E., Surface Science Spectra, 10, 32 (2003).Google Scholar
7. Orel, Z. C., Appl. Spectroscopy, 53, 241 (1999).Google Scholar
8. Xia, C., Zhang, Y., and Liu, M., Electrochem. Solid-State Lett., 6, A290 (2003).Google Scholar
9. Maric, R., Seward, S., Faguy, P. W., and Oljaca, M., Electrochem. Solid-State Lett, 6, A91 (2003)Google Scholar
10. Sata, N., Eberman, K., Ebert, K. and Maier, J., Nature, 408, 946 (2000).Google Scholar
11. Azad, S., Thevuthasan, S., El-Azab, A., Marina, O. A., Wang, C. M., Shutthanandan, V., McCready, D. E., Saraf, L. and Jaffe, J. E., (Submitted to Appl. Phy. Lett.)Google Scholar
12. Knauth, P., Tuller, H. L., Solid State Ionics, 136–137, 1215 (2000).Google Scholar