Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-06T07:18:16.220Z Has data issue: true hasContentIssue false

Growth of Nonpolar AlN and AlGaN on 4H-SiC (1-100) by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Rob Armitage
Affiliation:
rob@semicon.kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering
Masahiro Horita
Affiliation:
horita@semicon.kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering
Jun Suda
Affiliation:
suda@kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering, Japan
Tsunenobu Kimoto
Affiliation:
kimoto@kuee.kyoto-u.ac.jp, Kyoto University, Department of Electronic Science and Engineering, Japan
Get access

Abstract

AlN and AlGaN have been grown on 4H-SiC (1-100) substrates by rf-plasma molecular beam epitaxy. AlN assumes a metastable 4H structure to match the in-plane stacking arrangement of the substrate. Initial 2D nucleation of 4H-AlN is revealed by reflection high-energy electron diffraction. The epitaxial quality is evidenced by narrow x-ray diffraction ω-scan line widths less than 100 arcsec for symmetric and asymmetric reflections. Structural characterization results for AlGaN/AlN multiple quantum wells are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K.H., Nature 406, 865 (2000).CrossRefGoogle Scholar
2. Ng, H. M., Appl. Phys. Lett. 80, 4369 (2002).CrossRefGoogle Scholar
3. Haskell, B. A., Wu, F., Craven, M. D., Matsuda, S., Fini, P. T., Fujii, T., Fujito, K., DenBaars, S. P., Speck, J. S., and Nakamura, S., Appl. Phys. Lett. 83, 644 (2003).CrossRefGoogle Scholar
4. Brandt, O., Sun, Y.J., Däweritz, L. and Ploog, K.H., Physica E 23, 339 (2004).CrossRefGoogle Scholar
5. Onojima, N., Suda, J., Kimoto, T., and Matsunami, H., Appl. Phys. Lett. 83, 5208 (2003).CrossRefGoogle Scholar
6. Chichibu, S. F., Abare, A. C., Minsky, M. S., Keller, S., Fleischer, S. B., Bowers, J. E., Hu, E., Mishra, U. K., Coldren, L. A., DenBaars, S. P., and Sota, T., Appl. Phys. Lett. 73, 2006 (1998).CrossRefGoogle Scholar
7. Zhang, J. P., Asif Khan, M., Sun, W. H., Wang, H. M., Chen, C. Q., Fareed, Q., Kuokstis, E., and Yang, J. W., Appl. Phys. Lett. 81, 4392 (2002).Google Scholar
8. Stemmer, S., Pirouz, P., Ikuhara, Y., and Davis, R. F., Phys. Rev. Lett. 77, 1797 (1996).CrossRefGoogle Scholar
9. Nakamura, S., Kimoto, T., Matsunami, H., Tanaka, S., Teraguchi, N., and Suzuki, A., Appl. Phys. Lett. 76, 3412 (2000).CrossRefGoogle Scholar
10. Kaplan, R. and Parrill, T. M., Surf. Sci. Lett. 165, L45 (1986).Google Scholar
11. Youngman, R. A. and Harris, J. H., J. Am. Ceram. Soc. 73, 3238 (1990).CrossRefGoogle Scholar